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Suppose we have a targeted response
time of 500ms, but our application
responds on average in | .4s.

What can we do!



Optimization Scaling
(Find bottlenecks) (Add resources)



DevOps philosophy:
The static (development) and dynamic (operations) states of the software must be
integrated to ensure the continuity of the software in the face of changes

Dev

Ops

Optimization Scaling
(Find bottlenecks) (Add resources)



Content

* Autoscaling and self-adaptive systems
= Control theory

* Chaos monkey (Chaos engineering)

= Case studies
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Scaling up: making a component bigger or faster so that it can handle

more load.

Scaling out: adding more components in parallel to spread out a load.




Amazon DynamoDB Autoscaling
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Provisioning without Autoscaling
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Provisioning with Autoscaling
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Self-adaptive systems

" Engineering of systems that can adapt.

" |n fact, we can transform software to adapt or we can
develop systems-managers that can adapt other
software systems.

* Adaptation can refer to any quality.
v Performance - self-optimizing systems.
v'Security - self-protective systems.
v'Reliability - self-repairing systems.
v'Functionality - self-configuring systems

" |[n 2005, IBM proposed an architectural framework for

the design and development of self-adaptive software
systems, MAPE-K.
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MAPE-K

Monitoring: The module to
monitor software, infrastructure,
and environment.

Analysis: The module to analyze
the measurements and identify
the problematic cases.

Planning: The module for planning
adaptive actions and answering
problems.

Execution: The module to apply
adaptive actions to the software
or its infrastructure.

Knowledge: A knowledge base
for past events and data that will
be analyzed to improve future
adaptive actions.

Analyze

Monitor Knowledge Execute

Domain Specific System

y

v

Context

Managing
System

Managed
System

Environment

J
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Monitoring

" Monitoring is the activity of measuring the software
during the time of its execution, when the system is
already deployed.

v’ Profiling is the measurement of a sometimes simulated
execution during its development.

v'The stress test is the measurement of the system under
controlled conditions and before it is deployed to the final
infrastructure.

* We can monitor the system at different levels.
v’ Application.
v’ Operating system
v'Infrastructure (virtual machine, container)
v’ Equipment

14



Monitoring: challenges

The different levels have different challenges.

= At the hardware and infrastructure level, multilocation (the situation
where multiple users share the same hardware for their applications)
affects the reliability of the metrics for our application.

= At the operating system level, the coexistence of several processes also
affects the reliability of the measurements.

= At the application level, we can measure the right response time from
our side, not from the customer's point of view.

v' There is also the delay of the network to consider that we can not control.

" Like profiling, monitoring can be intrusive or external.

v’ Live monitoring (the module surveys the system in real time) is intrusive and
may affect the measurement, but it'is very accurate.

v’ External monitoring uses sampling. The measurements are stored (e.g., in a
database) and the analysis module retrieves them asynchronously.
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AWS CloudWatch
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Analysis

* The analysis module is responsible for monitoring the health
of the monitored system and identifying problematic
situations.

* The simplest analysis is to compare measurements at
certain thresholds.

v Eg CPU <80%
* A more sophisticated analysis is to compare measures to

predictions or estimates of a performance model.

v'By knowing the workload and resource demands, resource
consumption and expected response time can be estimated and
compared to current measures.

" |In any case, we can define rules (IF-THEN) for the analysis.

" The rules can be integrated into the monitoring module that
can specify alerts.



Planning

* Planning is responsible for designing adaptive actions to
respond to problematic cases identified by the analysis.

* Depending on the level of monitoring and the results of
the analysis, the software or its infrastructure can be
adapted.

" One can have a static or dynamic planning.
= Static: The planner has a fixed correspondence between
problematic cases and adaptive actions.
v Eg Add a server when the CPU usage exceeds the 80% threshold.
* Dynamic:According to the results of the analysis, the planner
will adjust the adaptive action.

v’ Eg If the difference between the current measurement and the last
measurement is more than 30% add two servers.
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Execution

" The execution module consists of actuators that
apply the adaptive actions designed by the planner.

" If the actions occur at the application level, one
should follow the processes of continuous
Integration.

v'Run all the tests, submit the new version to the
repository, update the other artifacts etc.

" For actions that adapt infrastructure, cloud service
providers provide actuators through APlIs.

v'Or through graphical interfaces for non-automatic
scaling.
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Scaling types

= Scheduled scaling: Workload is planned for a period of time and scaling
actions are programmed (eg adding resources during peak hours or
during holidays).
v’ Benefit: There is no need to manage the system continuously.
v’ Disadvantage: The system can not react to unforeseen load changes.
= Reactive Scaling: Current system measurements are analyzed and
exceptional cases are responded to.

v’ Benefit: The system can respond to sudden and unexpected changes
in workload.

v Disadvantage: The variation can be temporary and we will change
the system infrastructure too frequently.
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Scaling types (cont’d)

= Cumulative scaling (reactive): Continuous, not instantaneous violations
are considered before applying the adaptations.

v' Advantage: It increases the certainty of the need for scaling.
v Disadvantage: It delays the adaptation and temporarily deteriorates
the performance.
* Predictive scaling: The workload is predicted for the near future, and the
system is adapted before a problematic case occurs.

v" Advantage: System performance can be guaranteed accurately and
quickly.

v Disadvantage: It is not always possible to predict exactly the
workload. It is very possible that we will lose exceptional cases.

23



Control theory

We can implement a management system by following the control
theory for physical systems.

The output of a system is monitored by a sensor.

The monitored value is compared to a reference value (an objective,
a threshold or an estimate).

The error between the two values is entered into a controller that
will calculate an input (an adaptive action) to fit the system.

Measured System et .
Reference + error input ystem outpu
»| Controller p————3p System s
Measured output
Sensor
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PID controller

The PID controller is one of the most popular and
commonly used types of controllers. It consists of
three parts:

= Proportional: It measures the current error
between the reference value and just the current
measurement. It represents the reactive aspect of
adaptation.

" Integral: It measures the cumulative error
between the reference value and the past
measurements. It represents the cumulative aspect
of adaptation.

= Derivative: It "measures” the future error. In fact, it
is an estimate of the tendency of the error. It
represents the predictive aspect of adaptation.

The three parts make up the error according to

which the input to adapt the system is calculated. 26



Controller properties

* Rise time:The time to
increase the output to the

reference value. é

* Overshoot:The percentage
of the error when the output
increases more than the
reference value.

= Settling time: the time it
takes for the error to become .
minimal

= Stability:A state of minimal
error.

K, =1
Ki=0
Ky=0

= Steady-error state:A \

non-zero error state that is
needed for the proportional
part.
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What runtime problems
should we expect and prepare
our self-adaption mechanisms

for?



Chaos Monkey



A flat tire

e Is your spare tire inflated?
e Do you have the tools in the trunk!?
e Do you even know how to change a tire!

o Solution

o Have a monkey puncture your tire once a week
o And fix it
o So that when you have a flat on the highway you’ll be ready



Software is Artificial

o Chaos is expensive in the real physical environment,
but
e “but can be (almost) free and automated in the cloud.”



Chaos Monkey

e Randomly disables production instances to make sure
that the system is robust enough to survive this
common type of failure without any customer impact.



Chaos is added in production

“By running Chaos Monkey in the middle of a
business day, in a carefully monitored
environment with engineers standing by to
address any problems, we can still learn the lessons about
the weaknesses of our system, and build automatic
recovery mechanisms to deal with them. So next
time an instance fails at 3 am on a Sunday, we
won’t even notice.”



Types of Chaos

e Original Chaos Monkey: bring down random production
instances

e Latency Monkey induces artificial delays in communication layer

e Doctor Monkey taps into health checks to check for system
health (eg CPU load) and remove unhealthy instances

e Janitor Monkey find unused resources and gets rid of them

e Conformity Monkey finds instances that don’t adhere to best-
practices and kill them

e Security Monkey finds security violations or vulnerabilities and
kill the associated instances

e |0-18 Localization Monkey detects problems caused by
multiple geographic regions and languages

e Chaos Gorilla simulates an outage of an entire availability zone



Latency Monkey

o Latency Monkey induces artificial delays in
communication layer

e Simulate service degradation

o Measures if upstream services respond appropriately.

e Large delays simulate node or service being down
o Without actually bringing down the service (ie other parts
of system still run normally)

e Good for testing the fault tolerance of a hew
service



Doctor Monkey

o Health checks that run on each instance as well as
monitors other external signs of health (e.g. CPU
load)

e Goal: check for unhealthy instances.

e Unhealthy instances are removed from service (ie end
users don’t see them)

« Keep service up, but only for devs, so the service
owners can find the problem

e Once the root-cause is found, the service is
terminated



Janitor Monkey

e Ensures that the environment is running free of clutter
and waste
e Searches for unused resources and disposes of them



Conformity Monkey

e Check for instances that don’t adhere to best-
practices and shuts them down

o Don’t tolerate laziness

o For example, a service that isn’t part of auto-scaling
will fail when requests surge

o Shut it down now, so that it doesn’t happen at a peak
period



Security Monkey (special case of
conformity)

« Finds security violations or vulnerabilities,

o For example, improperly configured AWS security
groups,

o Terminates the offending instances.

e Also ensures that all SSL and DRM certificates are

valid and are not coming up for renewal.



|0—18 Monkey Localization-
Internationalization

o Detects configuration and run time problems in
instances serving customers in multiple geographic
regions, using different languages and character sets.



Chaos Gorilla

o Simulates an outage of an entire availability zone.

e Want to verify that services automatically re-balance
to the functional availability zones without user-visible
impact or manual intervention.

o Eg remove North American Amazon instances and run

from Europe



Types of Chaos

e Original Chaos Monkey: bring down random production
instances

e Latency Monkey induces artificial delays in communication layer

e Doctor Monkey taps into health checks to check for system
health (eg CPU load) and remove unhealthy instances

e Janitor Monkey find unused resources and gets rid of them

e Conformity Monkey finds instances that don’t adhere to best-
practices and kill them

e Security Monkey finds security violations or vulnerabilities and
kill the associated instances

e |0-18 Localization Monkey detects problems caused by
multiple geographic regions and languages

e Chaos Gorilla simulates an outage of an entire availability zone



Summary

e Chaos is added in production in the middle of the
business day

« with careful monitoring

« and engineers standing by to fix problems

e so that

« weaknesses will be identified

e auto-recovery mechanisms will be build

e so that

e a 3 am failure won’t need a manual interventions



Case studies

Autonomous configuration

Workload prediction

Autoscaling of containers

Comparison between autoscaling methods (rules, model, controller)
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Autonomous configuration 201

Adopting Autonomic Computing Capabilities in Existing
Large-Scale Systems

An Industrial Experience Report

Heng Li Tse-Hsun (Peter) Chen
Concordia University, Canada
peterc@encs.concordia.ca

Queen’s University, Canada
hengli@cs.queensu.ca

Mohamed Nasser
BlackBerry, Canada

ABSTRACT

In current DevOps practice, developers are responsible for the op-
eration and maintenance of software systems. However, the human
costs for the operation and maintenance grow fast along with the
increasing functionality and complexity of software systems. Auto-
nomic computing aims to reduce or eliminate such human interven-
tion. However, there are many existing large systems that did not
consider autonomic computing capabilities in their design. Adding
autonomic computing capabilities to these existing systems is par-
ticularly challenging, because of 1) the significant amount of efforts
that are required for investigating and refactoring the existing code
base, 2) the risk of adding additional complexity, and 3) the diffi-
culties for allocating resources while developers are busy adding
core features to the system. In this paper, we share our industrial
experience of re-engineering autonomic computing capabilities to
an existing large-scale software system. Our autonomic computing

Ahmed E. Hassan
Queen’s University, Canada
ahmed@cs.queensu.ca

Parminder Flora
BlackBerry, Canada

CCS CONCEPTS

» Software and its engineering — Software development pro-
cess management; » Computer systems organization — Self-
organizing autonomic computing;

KEYWORDS

Autonomic computing, software re-engineering, performance engi-
neering, software testing

ACM Reference Format:

Heng Li, Tse-Hsun (Peter) Chen, Ahmed E. Hassan, Mohamed Nasser,
and Parminder Flora. 2018. Adopting Autonomic Computing Capabilities in
Existing Large-Scale Systems: An Industrial Experience Report. In ICSE-SEIP
'18: 40th International Conference on Software Engineering: Software Engi-
neering in Practice Track, May 27-June 3 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3183519.3183544
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Manually configuring large-scale

software systems is costly & error-
prone
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Using an AlOps solution to
autonomously tune system

configurations
Self-configuring Optimized Self-optimizing
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Challenges in autonomous
configuration of large-scale
software systems
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Challenges in autonomous
configuration of large-scale
software systems

Complex
system
behavior
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Understanding the relationship
between config. parameters and
performance metrics

Perf. critical
parameters
Perf. related
Pdrameters Q Perf. dqfq :
" 'h".. a \. )
Asking domain Running Multivariate
experts tests Adaptive
Regression

Splines (MARS)

Only a few out of many candidate parameters significantly
impact system performance
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Challenges in autonomous
configuration of large-scale
software systems

Fast response
to
environment
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Real-time monitoring of system

behavior using readily-existing
logs and metrics data
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Fast search for optimal
configurations (Hill Climbing)

"Like climbing Everest in thick
fog with amnesia"

* Continually moves in the direction of increasing values

(uphill).
* Terminates when it reaches a peak where no neighbor
has a higher value.

* Fast & local optimization.

Fast response to workload changes
(within seconds)
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Challenges in autonomous
configuration of large-scale
software systems

Minimal
footprint
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Separating the autonomous
configuration capabilities from the

Self-configuring Optimized Self-optimizing
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Autonomous configuration
significantly improves system

Low workload, KPI is optimal

2 High workload, KPI drops
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Autonomous configuration
significantly improves system
performance

Adapting quickly to the changing workloads
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Workload Prediction 2015

Workload Prediction Using ARIMA Model
and Its Impact on Cloud Applications’ QoS

Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya

Abstract—As companies shift from desktop applications to cloud-based software as a service (SaaS) applications deployed on
public clouds, the competition for end-users by cloud providers offering similar services grows. In order to survive in such a
competitive market, cloud-based companies must achieve good quality of service (QoS) for their users, or risk losing their customers
to competitors. However, meeting the QoS with a cost-effective amount of resources is challenging because workloads experience
variation over time. This problem can be solved with proactive dynamic provisioning of resources, which can estimate the future need
of applications in terms of resources and allocate them in advance, releasing them once they are not required. In this paper, we present
the realization of a cloud workload prediction module for SaaS providers based on the autoregressive integrated moving average
(ARIMA) model. We introduce the prediction based on the ARIMA model and evaluate its accuracy of future workload prediction
using real traces of requests to web servers. We also evaluate the impact of the achieved accuracy in terms of efficiency in resource
utilization and QoS. Simulation results show that our model is able to achieve an average accuracy of up to 91 percent, which leads
to efficiency in resource utilization with minimal impact on the QoS.

Index Terms—Cloud computing, workload prediction, ARIMA
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Adaptive Cloud Provisioning
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Time Series Forecasting (ARIMA)

ARIMA: Autoregressive integrated moving average

Forecast for y at time # = constant AR term
+ |weighted sum of the last p values of y

+ |weighted sum o1 the last g forecast errors

MA term

yt U+ Pyt t DPpYi-p — elet—l -t qut—q

61



Predicted vs. Actual Workload
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ontroller SEAMS 2017

Delivering Elastic Containerized Cloud Applications
to Enable DevOps

Cornel Barna, Hamzeh Khazaei. Marios Fokaefs and Marin Litoiu
Department of Electrical Engineering and Computer Science
York University
Toronton, ON. Canada
{cornel.mlitoiu} @cse.yvorku.ca. {hkh.fokaefs} @yorku.ca

Abstract—Following recent technological advancements in soft-
ware systems, like microservices, containers and cloud systems,
DevOps has risen as a new development paradigm. Its aim is
to bridge the gap between development and management of
software systems and enable continuous development, deploy-
ment and integration. Towards this end, automated tools and
management systems play a crucial role. In this work, we propose
a method to develop an autonomic management system for multi-
tier, multi-layer data-intensive containerized applications based
on a performance model of such systems. The model is shown to
be robust and accurate in estimating and predicting the system’s
performance for various workloads and topologies, while the
AMS is capable of regulating the application’s behaviour by
taking independent actions on its various parts.

Keywords-devops; cloud computing: autonomic management
systems: performance models; continuous delivery: containers:
scaling: multi-tier big data applications:

available solutions to solve recurring performance problems
may actually create additional challenges for the develop-
ers. One important decision is about the functionality and
the architecture of the AMS. For complex software systems
that consist of many microservices and utilize a number of
virtualization technologies, one has to wonder whether there
is enough control and knowledge over the module to design
a single, overarching AMS or multiple independent ones for
each module. Another question is if there are multiple adaptive
actions that can achieve the same goal. which one we pick
and according to what criteria. In this situation, models can
be of particular help as they give the opportunity to consider
a number of different actions and solutions, evaluate them
and, eventually. through systematic decision-making processes
pick the ontimal one. The models are part of the analvsis and
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HEAT algorithm
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Cloud 2017

Evaluating Adaptation Methods for Cloud Applications: An Empirical Study

Marios Fokaefs, Yar Rouf, Cornel Barna and Marin Litoiu
Department of Electrical Engineering and Computer Science
York University
Toronto, ON, Canada
Email: fokaefs@ yorku.ca, yarrouf@my.yorku.ca, cornel@cse.yorku.ca, mlitoiu@yorku.ca

Abstract—Web software systems generally reside in highly
volatile environments: their incoming traffic may be subject
to sharp fluctuations from reasons that cannot always be
captured or predicted. Cloud computing provides a solution
to this problem by offering flexible resources, like containers,
which can be quickly and easily scaled according to the current
workload needs. Automating this process is a key aspect for
the management of modern web software systems, and there
is a plethora of methods to implement autonomic management
systems. In this work, we review three of these methods,
a threshold-based approach, a control-based approach and
a model-based approach. We design and run a number of
experiments for all three systems with different workloads
to evaluate their ability to manage the software system and
how well they do so. Our experiments were conducted on the
Amazon EC2 cloud with Docker containers.

Keywords-self-adaptive systems: cloud computing; contain-
ers; control theory: performance models;

and eventually applies the corrective actions. Different AMS
implementations and adaptation methods may focus on
different modules from the MAPE-K architecture. usually on
the analysis and planning as the monitoring and execution
modules are third-party tools available by the cloud or the
software provider.

In our work, we consider three types of AMS:

1) A threshold-based AMS implemented using prede-
fined thresholds on observed metrics and predefined
corrective actions. This is one of the most popular
methods currently in practice. mainly thanks to its sim-
plicity, its general applicability and its basic efficiency.
In practice, the developer defines a priori thresholds
on performance metrics. If current measurements de-

viate from these thresholds. it is an indication for a
nrohlam A< a reanonees the AMS takae a rradafinad
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Context

= An application of three levels.

" The goal is to manage the performance of the functional level by
applying Docker container scaling.

* Three management systems have been designed.

One that uses rules according to thresholds of performance indices
(CPU, response time).

One that uses a performance model to estimate the impact of
workload and available infrastructure.

-

A PID controller.

B=

Clients Web Servers
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Results: settings

Rise time Overshoot Settling time
Rule 67.98 184.25 22.24 8.7 13.61 14
PID 70.73 211.17 8.95 3.9 18.89 9.85
Model 77.72 222.86 14.71 9.25 17.82 13.7
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