
LOG 8371E
Software Quality Engineering

Lecture 11:
Autoscaling and Self-adaptive Systems

Heng Li, Assistant Professor

Armstrong

Armstrong
Armstrong Foundjem Ph.D. — Winter 2024

Suppose we have a targeted response
time of 500ms, but our application

responds on average in 1.4s.

What can we do?

3

4

plan

re
lea

seDev Ops

Optimization
(Find bottlenecks)

Scaling
(Add resources)

6

plan

re
lea

seDev Ops

Optimization
(Find bottlenecks)

Scaling
(Add resources)

DevOps philosophy:
The static (development) and dynamic (operations) states of the software must be

integrated to ensure the continuity of the software in the face of changes

Content

§Autoscaling and self-adaptive systems
§Control theory
§Chaos monkey (Chaos engineering)
§Case studies

7

Scaling

8

Scaling up: making a component bigger or faster so that it can handle
more load.
Scaling out: adding more components in parallel to spread out a load.

Image source: https://avinetworks.com/glossary/auto-scaling/

Amazon DynamoDB Autoscaling

9Image source: https://aws.amazon.com/blogs/database/amazon-dynamodb-auto-
scaling-performance-and-cost-optimization-at-any-scale/

Provisioning without Autoscaling

10Image source: https://aws.amazon.com/blogs/database/amazon-dynamodb-auto-
scaling-performance-and-cost-optimization-at-any-scale/

Provisioned

Consumed

Provisioning with Autoscaling

11Image source: https://aws.amazon.com/blogs/database/amazon-dynamodb-auto-
scaling-performance-and-cost-optimization-at-any-scale/

Provisioned
Consumed

Self-adaptive systems

§ Engineering of systems that can adapt.
§ In fact, we can transform software to adapt or we can

develop systems-managers that can adapt other
software systems.

§ Adaptation can refer to any quality.
üPerformance - self-optimizing systems.
üSecurity - self-protective systems.
üReliability - self-repairing systems.
üFunctionality - self-configuring systems

§ In 2005, IBM proposed an architectural framework for
the design and development of self-adaptive software
systems, MAPE-K.

12

MAPE-K

§ Monitoring: The module to
monitor software, infrastructure,
and environment.

§ Analysis: The module to analyze
the measurements and identify
the problematic cases.

§ Planning: The module for planning
adaptive actions and answering
problems.

§ Execution: The module to apply
adaptive actions to the software
or its infrastructure.

§ Knowledge: A knowledge base
for past events and data that will
be analyzed to improve future
adaptive actions.

13

Monitoring

§ Monitoring is the activity of measuring the software
during the time of its execution, when the system is
already deployed.
üProfiling is the measurement of a sometimes simulated

execution during its development.
üThe stress test is the measurement of the system under

controlled conditions and before it is deployed to the final
infrastructure.

§ We can monitor the system at different levels.
üApplication.
üOperating system
üInfrastructure (virtual machine, container)
üEquipment

14

Monitoring: challenges

The different levels have different challenges.
§ At the hardware and infrastructure level, multilocation (the situation

where multiple users share the same hardware for their applications)
affects the reliability of the metrics for our application.

§ At the operating system level, the coexistence of several processes also
affects the reliability of the measurements.

§ At the application level, we can measure the right response time from
our side, not from the customer's point of view.

ü There is also the delay of the network to consider that we can not control.

§ Like profiling, monitoring can be intrusive or external.
ü Live monitoring (the module surveys the system in real time) is intrusive and

may affect the measurement, but it is very accurate.
ü External monitoring uses sampling. The measurements are stored (e.g., in a

database) and the analysis module retrieves them asynchronously.

15

AWS CloudWatch

18

Analysis

§ The analysis module is responsible for monitoring the health
of the monitored system and identifying problematic
situations.

§ The simplest analysis is to compare measurements at
certain thresholds.
üEg CPU <80%

§ A more sophisticated analysis is to compare measures to
predictions or estimates of a performance model.
üBy knowing the workload and resource demands, resource

consumption and expected response time can be estimated and
compared to current measures.

§ In any case, we can define rules (IF-THEN) for the analysis.
§ The rules can be integrated into the monitoring module that

can specify alerts.

19

Planning

§ Planning is responsible for designing adaptive actions to
respond to problematic cases identified by the analysis.

§ Depending on the level of monitoring and the results of
the analysis, the software or its infrastructure can be
adapted.

§ One can have a static or dynamic planning.
§ Static: The planner has a fixed correspondence between

problematic cases and adaptive actions.
ü Eg Add a server when the CPU usage exceeds the 80% threshold.

§ Dynamic: According to the results of the analysis, the planner
will adjust the adaptive action.
ü Eg If the difference between the current measurement and the last

measurement is more than 30% add two servers.

20

Execution

§ The execution module consists of actuators that
apply the adaptive actions designed by the planner.

§ If the actions occur at the application level, one
should follow the processes of continuous
integration.
üRun all the tests, submit the new version to the

repository, update the other artifacts etc.

§ For actions that adapt infrastructure, cloud service
providers provide actuators through APIs.
üOr through graphical interfaces for non-automatic

scaling.

21

Scaling types
§ Scheduled scaling: Workload is planned for a period of time and scaling

actions are programmed (eg adding resources during peak hours or
during holidays).
üBenefit: There is no need to manage the system continuously.
üDisadvantage: The system can not react to unforeseen load changes.

§ Reactive Scaling: Current system measurements are analyzed and
exceptional cases are responded to.
üBenefit: The system can respond to sudden and unexpected changes

in workload.
üDisadvantage: The variation can be temporary and we will change

the system infrastructure too frequently.

22

Scaling types (cont’d)
§ Cumulative scaling (reactive): Continuous, not instantaneous violations

are considered before applying the adaptations.
üAdvantage: It increases the certainty of the need for scaling.
üDisadvantage: It delays the adaptation and temporarily deteriorates

the performance.

§ Predictive scaling:The workload is predicted for the near future, and the
system is adapted before a problematic case occurs.
üAdvantage: System performance can be guaranteed accurately and

quickly.
üDisadvantage: It is not always possible to predict exactly the

workload. It is very possible that we will lose exceptional cases.

23

Control theory

§ We can implement a management system by following the control
theory for physical systems.

§ The output of a system is monitored by a sensor.

§ The monitored value is compared to a reference value (an objective,
a threshold or an estimate).

§ The error between the two values is entered into a controller that
will calculate an input (an adaptive action) to fit the system.

25

PID controller

The PID controller is one of the most popular and
commonly used types of controllers. It consists of
three parts:

§ Proportional: It measures the current error
between the reference value and just the current
measurement. It represents the reactive aspect of
adaptation.

§ Integral: It measures the cumulative error
between the reference value and the past
measurements. It represents the cumulative aspect
of adaptation.

§ Derivative: It "measures" the future error. In fact, it
is an estimate of the tendency of the error. It
represents the predictive aspect of adaptation.

The three parts make up the error according to
which the input to adapt the system is calculated. 26

Controller properties

§ Rise time: The time to
increase the output to the
reference value.

§ Overshoot: The percentage
of the error when the output
increases more than the
reference value.

§ Settling time: the time it
takes for the error to become
minimal

§ Stability: A state of minimal
error.

§ Steady-error state: A
non-zero error state that is
needed for the proportional
part. 27

What runtime problems
should we expect and prepare
our self-adaption mechanisms

for?

Chaos Monkey

A flat tire

● Is your spare tire inflated?
● Do you have the tools in the trunk?
● Do you even know how to change a tire?
● Solution

○ Have a monkey puncture your tire once a week
○ And fix it
○ So that when you have a flat on the highway you’ll be ready

Software is Artificial

● Chaos is expensive in the real physical environment,
but

● “but can be (almost) free and automated in the cloud.”

Chaos Monkey

● Randomly disables production instances to make sure
that the system is robust enough to survive this
common type of failure without any customer impact.

Chaos is added in production

“By running Chaos Monkey in the middle of a
business day, in a carefully monitored
environment with engineers standing by to
address any problems, we can still learn the lessons about
the weaknesses of our system, and build automatic
recovery mechanisms to deal with them. So next
time an instance fails at 3 am on a Sunday, we
won’t even notice.”

Types of Chaos

● Original Chaos Monkey: bring down random production
instances

● Latency Monkey induces artificial delays in communication layer
● Doctor Monkey taps into health checks to check for system

health (eg CPU load) and remove unhealthy instances
● Janitor Monkey find unused resources and gets rid of them
● Conformity Monkey finds instances that don’t adhere to best-

practices and kill them
● Security Monkey finds security violations or vulnerabilities and

kill the associated instances
● 10–18 Localization Monkey detects problems caused by

multiple geographic regions and languages
● Chaos Gorilla simulates an outage of an entire availability zone

Latency Monkey

● Latency Monkey induces artificial delays in
communication layer

● Simulate service degradation
● Measures if upstream services respond appropriately.
● Large delays simulate node or service being down

○ Without actually bringing down the service (ie other parts
of system still run normally)

● Good for testing the fault tolerance of a new
service

Doctor Monkey

● Health checks that run on each instance as well as
monitors other external signs of health (e.g. CPU
load)

● Goal: check for unhealthy instances.
● Unhealthy instances are removed from service (ie end

users don’t see them)
● Keep service up, but only for devs, so the service

owners can find the problem
● Once the root-cause is found, the service is

terminated

Janitor Monkey

● Ensures that the environment is running free of clutter
and waste

● Searches for unused resources and disposes of them

Conformity Monkey

● Check for instances that don’t adhere to best-
practices and shuts them down

● Don’t tolerate laziness
● For example, a service that isn’t part of auto-scaling

will fail when requests surge
● Shut it down now, so that it doesn’t happen at a peak

period

Security Monkey (special case of
conformity)

● Finds security violations or vulnerabilities,
● For example, improperly configured AWS security

groups,
● Terminates the offending instances.
● Also ensures that all SSL and DRM certificates are

valid and are not coming up for renewal.

10–18 Monkey Localization-
Internationalization

● Detects configuration and run time problems in
instances serving customers in multiple geographic
regions, using different languages and character sets.

Chaos Gorilla

● Simulates an outage of an entire availability zone.
● Want to verify that services automatically re-balance

to the functional availability zones without user-visible
impact or manual intervention.

● Eg remove North American Amazon instances and run
from Europe

Types of Chaos

● Original Chaos Monkey: bring down random production
instances

● Latency Monkey induces artificial delays in communication layer
● Doctor Monkey taps into health checks to check for system

health (eg CPU load) and remove unhealthy instances
● Janitor Monkey find unused resources and gets rid of them
● Conformity Monkey finds instances that don’t adhere to best-

practices and kill them
● Security Monkey finds security violations or vulnerabilities and

kill the associated instances
● 10–18 Localization Monkey detects problems caused by

multiple geographic regions and languages
● Chaos Gorilla simulates an outage of an entire availability zone

Summary

● Chaos is added in production in the middle of the
business day

● with careful monitoring
● and engineers standing by to fix problems
● so that
● weaknesses will be identified
● auto-recovery mechanisms will be build
● so that
● a 3 am failure won’t need a manual interventions

Case studies
• Autonomous configuration
• Workload prediction
• Autoscaling of containers
• Comparison between autoscaling methods (rules, model, controller)

45

Autonomous configuration 2018

46

Manually configuring large-scale
software systems is costly & error-
prone

Software systemWorkload Performance

Configuration

47

Unsatisfied
perf. ?

Workloads are constantly evolving, requiring constant human
intervention to ensure optimal performance

Using an AIOps solution to
autonomously tune system
configurations

Software system
Self-
monitoring

Self-configuring Self-optimizingOptimized
parameter values

Logs

48

Performance
measures

Metrics

Challenges in autonomous
configuration of large-scale
software systems

49

Complex
system

behavior

Minimal
footprint

Fast response
to

environment

Challenges in autonomous
configuration of large-scale
software systems

50

Complex
system

behavior

Minimal
footprint

Fast response
to

environment

Understanding the relationship
between config. parameters and
performance metrics

Asking domain
experts

51

Perf. related
parameters Perf. data

Perf. critical
parameters

Running
tests

Only a few out of many candidate parameters significantly
impact system performance

Multivariate
Adaptive

Regression
Splines (MARS)

Challenges in autonomous
configuration of large-scale
software systems

52

Complex
system

behavior

Minimal
footprint

Fast response
to

environment

Real-time monitoring of system
behavior using readily-existing
logs and metrics data

53

Log &
metric

streams
Original system

Real-time perf.
measures

Logs

Perf. opt.

Metrics

Fast search for optimal
configurations (Hill Climbing)

"Like climbing Everest in thick
fog with amnesia"

• Continually moves in the direction of increasing values
(uphill).

• Terminates when it reaches a peak where no neighbor
has a higher value.

• Fast & local optimization.

54

Fast response to workload changes
(within seconds)

Challenges in autonomous
configuration of large-scale
software systems

55

Complex
system

behavior

Minimal
footprint

Fast response
to

environment

Separating the autonomous
configuration capabilities from the
original system

Software system
Self-
monitoring

Self-configuring Self-optimizingOptimized
parameter values

Remote
control

Logs

56

Performance
measures

Metrics

Autonomous configuration
significantly improves system
performance

57

●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●●

●

●●
●

●

●

●
●
●
●●
●●

●

●

●

●

●

●●●●●
●

●

●

●

●●●
●
●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●●●●

●

●

●●
●
●●
●●
●

●

●

●

●
●●●●●●

●

●

●

●

●●●●
●
●

●

●

●
●

●

●●●
●
●

●

●

●

●
●●●●
●●

●

●

●

●

●●●

●

●
●

●

●

●●
●

●
●●
●●

●

●

●

●

●

●

●●●●●
●

●
●●

●
●
●
●
●●
●
●

●

●
●●
●
●
●
●●
●●●●

●

●

●
●●●
●

●
●●
●●●

●
●

●
●
●
●●
●●
●
●
●
●

●

●

●
●
●●
●
●
●
●
●
●●
●●●●
●●
●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●●
●●●
●

●

●

●
●
●
●●
●

●

●●●
●
●●
●●
●

●
●
●
●
●

●

●

●

●●
●

●
●
●
●
●●
●●●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●
●
●
●
●●

●

●
●

●
●●●●

●

●

●

●
●
●
●
●
●●

●

●
●

●

●
●●
●●●●
●
●

●

●

●
●
●●
●

●

●
●
●
●●●

●
●

●

●

●

●

●

●
●
●●
●
●

●

●

●

●

●

●
●
●●●●
●●

●

●

●

●

●
●

●

●

●
●●

●
●●

●
●
●
●

●
●

●
●

●
●
●

●

●

●●
●●

●

●●●
●
●
●
●

●
●
●

●

●

●

●
●●

●

●

●

●●
●

●

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 60 120 180 240 300
Running Time (minutes)

Key
Performance

Indicator

Autonomic computing capabilities
●

Turned off
Turned on

Low workload, KPI is optimal

High workload, KPI drops

(KPI)

Autonomous configuration

Autonomous configuration
significantly improves system
performance

58

●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●●

●

●●
●

●

●

●
●
●
●●
●●

●

●

●

●

●

●●●●●
●

●

●

●

●●●
●
●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●●●●

●

●

●●
●
●●
●●
●

●

●

●

●
●●●●●●

●

●

●

●

●●●●
●
●

●

●

●
●

●

●●●
●
●

●

●

●

●
●●●●
●●

●

●

●

●

●●●

●

●
●

●

●

●●
●

●
●●
●●

●

●

●

●

●

●

●●●●●
●

●
●●

●
●
●
●
●●
●
●

●

●
●●
●
●
●
●●
●●●●

●

●

●
●●●
●

●
●●
●●●

●
●

●
●
●
●●
●●
●
●
●
●

●

●

●
●
●●
●
●
●
●
●
●●
●●●●
●●
●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●●
●●●
●

●

●

●
●
●
●●
●

●

●●●
●
●●
●●
●

●
●
●
●
●

●

●

●

●●
●

●
●
●
●
●●
●●●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●
●
●
●
●●

●

●
●

●
●●●●

●

●

●

●
●
●
●
●
●●

●

●
●

●

●
●●
●●●●
●
●

●

●

●
●
●●
●

●

●
●
●
●●●

●
●

●

●

●

●

●

●
●
●●
●
●

●

●

●

●

●

●
●
●●●●
●●

●

●

●

●

●
●

●

●

●
●●

●
●●

●
●
●
●

●
●

●
●

●
●
●

●

●

●●
●●

●

●●●
●
●
●
●

●
●
●

●

●

●

●
●●

●

●

●

●●
●

●

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 60 120 180 240 300
Running Time (minutes)

Key
Performance

Indicator

Autonomic computing capabilities
● Turned off

Turned on

KPI is always optimal

Adapting quickly to the changing workloads

(KPI)

Autonomous configuration

Workload Prediction 2015

59

Adaptive Cloud Provisioning

60

Time Series Forecasting (ARIMA)

61

AR term

MA term

ARIMA: Autoregressive integrated moving average

Predicted vs. Actual Workload

62

Controller SEAMS 2017

63

Context

§ A multilevel
application that
consists of a
functional level, a level
of analysis, and a level
of data.

§ A management
system based on a
QN model.

§ The goal is to manage
the performance of
the functional level
and the level of
analysis by applying
Docker container
scaling.

64

Results

65

HEAT algorithm

§ The HEAT algorithm is an
example of cumulative
adaptation.

§ A "heat" index is increased
each time the measurement
violates the reference value
(the threshold).

§ When the heat value is 5 we
add a server.

§ If the measurement does not
violate the threshold, do not
reset the heat value to zero,
but decrease it by one.

§ Over here, past mistakes are
considered.

66

Cloud 2017

67

Context
§ An application of three levels.

§ The goal is to manage the performance of the functional level by
applying Docker container scaling.

§ Three management systems have been designed.

§ One that uses rules according to thresholds of performance indices
(CPU, response time).

§ One that uses a performance model to estimate the impact of
workload and available infrastructure.

§ A PID controller.

68

Results

69

Results: settings

Method CPU (moy) RT (moy) MAPE Rise time Overshoot Settling time

Rule 67.98 184.25 22.24 8.7 13.61 14

PID 70.73 211.17 8.95 3.9 18.89 9.85

Model 77.72 222.86 14.71 9.25 17.82 13.7

70

References

§ Li, Heng, et al. "Adopting Autonomic Computing Capabilities in
Existing Large-Scale Systems." 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP). IEEE, 2018.

§ Calheiros, Rodrigo N., et al. "Workload prediction using ARIMA model
and its impact on cloud applications’ QoS." IEEE transactions on cloud
computing 3.4 (2014): 449-458.

§ Barna, Cornel, et al. "Delivering elastic containerized cloud
applications to enable DevOps." 2017 IEEE/ACM 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 2017.

§ Fokaefs, Marios, et al. "Evaluating adaptation methods for cloud
applications: An empirical study." 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD). IEEE, 2017.

71

