
LOG 8371E
Software Quality Engineering

Lecture 09:
Software Security and Security Testing (2)
Heng Li, Assistant Professor

Armstrong
Armstrong Foundjem Ph.D. — Winter 2024

Armstrong

Attackers exploit the weaknesses of the
application to do harm to business or
organization

2

Weakness

Attack

Threat
Agents

ImpactWeakness

Attack

Attack
Vectors

Security
Weaknesses

Technical
Impacts

Business
Impacts

Attack

Impact

Impact

Asset

Function

Asset

Weakness

Control

Control

ControlWeakness

Security
Controls

OWASP
Testing
Framework

4

A reference
framework that
comprises techniques
and tasks that are
appropriate at various
phases of the SDLC

Penetration test vs Static
analysis

Penetration test
§After the deployment.
§Must combine with

manual efforts.
§ Increase the certainty

of the risks.

Static analysis
§During the

development.
§Mostly automatic, but

with the risk of false
positives.

§Capable of early
identification and
minimization of
correction costs.

5

Agenda

§OWASP Top 10 security risks
§Fuzz testing
§ Self-protective software

References:
OWASP Top Ten: https://owasp.org/www-project-top-ten/

Common Weakness Enumeration: https://cwe.mitre.org

Yuan, Eric, et al. Architecture-based self-protecting software
systems. QSA. 2013.

6

https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/

Topic’s topic in the SQA system

7

OWASP Top 10
Security Risks

8

Version 2021

What is OWASP Top 10

9

A categorization of security risks (CWEs)

Why is OWASP Top 10
important?

§ To be used as a guideline for security
requirements, secure architecture/design, security-
aware implementation, testing, and deployment.

§ To be used as a standard for assessing the
security maturity of an application or benchmarking
different versions.

10

How were the Top 10 risks made?

§ Security data from 500,000 applications [8 risks]
§ Look into the past
§ Each contributing organization contributes a list of

CWEs w/ count of applications found to contain that
CWE

§Community survey [risks]
§ Essential risks that past data may not show yet

§Categorization of about 400 CWEs

11

How were the Top 10 risks made
(Core Principles)

§OWASP Top 10 is a baseline, not a ceiling
§Data is good, data isn’t everything
§Data is looking in the past, hence the community

survey
§ Stability is good

§Need to raise the minimum bar
§Drive the right behavior to improve software

security
§ Focus on root cause over symptom

12Brian Glas: The making of the OWASP Top 10 and beyond, 2021.

How is the security risk level calculated?

13Brian Glas: The making of the OWASP Top 10 and beyond, 2021.

RISK = Likelihood * Impact
Likelihood:
§ Incident Rate -> num apps CWE found / num app

CWE tested
§Coverage -> the percentage of the apps tested for

the CWE
Impact:
CVSS sub-scores for Exploit and Impact

14

How is the security risk level calculated?

OWASP Top 10

15

A categorization of security risks (CWEs)

16

§ Access control failures typically lead to:
§ Bypass access control checks
§ Unauthorized access to accounts
§ Unauthorized creation, reading, updating and deletion of data
§ Elevation of privilege

§ Privacy and regulatory impacts
§ The biggest breaches and largest costs

34 CWEs
19k CVEs

Found in 3.8% apps
Occurred 318k times

Weighted Exploit: 6.9
Weighted Impact: 5.9

A01: Broken Access Control

17

Example CWEs
§CWE-200: Exposure of Sensitive Information to an

Unauthorized Actor,
§CWE-201: Insertion of Sensitive Information Into Sent

Data, and

§CWE-352: Cross-Site Request Forgery

A01: Broken Access Control

18

A01: Broken Access Control

20

§ Determine the protection needs of data in
transit and at rest:
§ Passwords, credit card numbers, health records,

personal information, and business secrets;
§ Privacy laws, e.g., EU's General Data Protection

Regulation (GDPR);
§ Regulations, e.g., financial data protection such as

PCI Data Security Standard (PCI DSS).

§ Mostly found during code reviews or static
code analysis

29 CWEs
3075 CVEs

Found in 4.5% apps
Occurred 234k times

Weighted Exploit: 7.3
Weighted Impact: 6.8

A02: Cryptographic Failures

A02: Cryptographic Failures

21

Example CWEs
§CWE-259: Use of Hard-coded Password,
§CWE-327: Broken or Risky Crypto Algorithm, and
§CWE-331: Insufficient Entropy.

22

A02: Cryptographic Failures

A03: Injection

23

§ Covers Cross Site Scripting (XSS) and JavaScript injection
due to safer view frameworks

§ Easily - but now rarely - found using tools
§ Still quite exploitable

§ Adopt better frameworks and more secure paved roads
§ Provide observability to development teams if they use less

secure alternatives
§ Help by providing paved roads and gold standard support for

safer frameworks

33 CWEs
32k CVEs

Found in 3.4% apps
Occurred 274k times

Weighted Exploit: 7.3
Weighted Impact: 7.2

A03: Injection

24

Example CWEs:
§CWE-79: Cross-site Scripting,
§CWE-89: SQL Injection, and
§CWE-73: External Control of File Name or Path

A03: Injection

25

Attacking:
http://trustedSite.example.com/welcome.php?userna
me=<Script Language="Javascript">alert("You've
been attacked!");</Script>

A04: Insecure Design

26

§ Broad category, but it’s NOT a catch all bucket!

§ Insecure design directly impacts application security
§ Insecure design is easily the costliest to fix later (up to 100x)

§ Really shift left! Earlier integration with the development
and teams

§ Threat model Where are controls needed? Are they
there? Do they work?

§ Adopt better frameworks! Create secure paved roads
with dev teams

40 CWEs
2691 CVEs

Found in 3.0% apps
Occurred 262k times

Weighted Exploit: 6.5
Weighted Impact: 6.8

A04: Insecure Design

27

Example CWEs:
§CWE-209: Generation of Error Message Containing

Sensitive Information,
§CWE-256: Unprotected Storage of Credentials,
§CWE-501: Trust Boundary Violation, and

§CWE-522: Insufficiently Protected Credentials.

A04: Insecure Design

28

A05: Security
Misconfiguration

29

§ Cloud infrastructure as code == slight jump to A5
§ Covers unhardened, misconfigured, and default

configurations

§ Eliminate the risk: Build “paved road” pre-
hardened development and production
frameworks, components, and build configurations

§ Surface the risk: Build tools to identify weakly or
insecurely configured components and applications

20 CWEs
789 CVEs

Found in 4.5% apps
Occurred 208k times

Weighted Exploit: 8.1
Weighted Impact: 6.6

A05: Security
Misconfiguration

30

CWE examples
§CWE-16: Configuration, and
§CWE-260: Password in Configuration File
§CWE-611: Improper Restriction of XML

External Entity Reference

A05: Security
Misconfiguration

31

A06: Vulnerable and Outdated
Components

32

§ You are likely vulnerable if:
§ you do not know the versions of all components;
§ if a component is vulnerable, unsupported, or out of

date.

§ Root cause of the LARGEST and MOST COSTLY
breach of all time

§ Recommend using CI/CD tools to warn for
outdated components

§ Strongly recommend breaking the build for
vulnerable components

3 CWEs
0 CVEs

Found in 8.8% apps
Occurred 30k times

Weighted Exploit: 5.0
Weighted Impact: 5.0

A06: Vulnerable and Outdated
Components

34

Example CWEs
§CWE-937/1035: Using Components with

Known Vulnerabilities
§CWE-1104: Use of Unmaintained Third

Party Components

A07: Identification and
authentication failures

36

§ Includes authentication and session management
issues

§ Protect against re-used, breached, and weak
passwords

§ Add MFA to all the things
§ Use the ASVS to improve authentication of your

apps
§ Consider a “paved road” secured and shared

authentication service

22 CWEs
3897 CVEs

Found in 2.6% apps
Occurred 132k times

Weighted Exploit: 7.4
Weighted Impact: 6.5

A07: Identification and
authentication failures

37

Example CWEs:
§CWE-297: Improper Validation of

Certificate with Host Mismatch,
§CWE-287: Improper Authentication, and
§CWE-384: Session Fixation.

A07: Identification and
authentication failures

38

A08: Software and
Data Integrity Failures

39

§ Integrity of business or privacy critical data
§ Lack of integrity of includes from content data networks
§ Software updates without integrity
§ CI/CD pipelines without check in or build checks, unsigned

output

§ Improve the integrity of the build process
§ Use SBOM to identify authentic builds and updates
§ Use sub-resource integrity if using CDN for web page

includes
§ Consider how you vet and ensure npm, maven, repos are

legit

10 CWEs
1152 CVEs

Found in 2.0% apps
Occurred 47.9k times

Weighted Exploit: 6.9
Weighted Impact: 7.9

A08: Software and
Data Integrity Failures

40

Example CWEs
§CWE-829: Inclusion of Functionality from

Untrusted Control Sphere,
§CWE-494: Download of Code Without

Integrity Check, and

§CWE-502: Deserialization of Untrusted
Data.

A08: Software and
Data Integrity Failures

41

A09: Security Logging and
Monitoring Failures

42

§ Without sufficient logging and monitoring, breaches
cannot be detected effectively

§ Critical to reduce the breach window, response time,
and cleanup

§ Necessary if you have breach disclosure laws
§ Critical if you intend to prosecute

§ Interview or code review the best review technique
§ Static code analysis can’t find the absence
§ Still difficult to dynamically test

4 CWEs
242 CVEs

Found in 6.5% apps
Occurred 53.6k times

Weighted Exploit: 6.9
Weighted Impact: 5.0

A09: Security Logging and
Monitoring Failures

43

Example CWEs:
§CWE-778: Insufficient Logging,
§CWE-117: Improper Output

Neutralization for Logs,
§CWE-223: Omission of Security-relevant

Information, and
§CWE-532: Insertion of Sensitive

Information into Log File.

A09: Security Logging and
Monitoring Failures

44

A10: Server-Side Request
Forgery (SSRF)

45

§ SSRF flaws occur whenever a web
application is fetching a remote resource
without validating the user-supplied URL

§ Frameworks need to protect against SSRF
by default

§ IDEs (and frameworks though *doc) need
to highlight potential SSRF

1 CWEs
385 CVEs

Found in 2.7% apps
Occurred 9.5k times

Weighted Exploit: 8.2
Weighted Impact: 6.7

A10: Server-Side Request
Forgery (SSRF)

46

CWEs:
§CWE-918: Server-side request forgery (SSRF)

Fuzz Testing

51

Fuzzing

§ Fuzz testing or Fuzzing:
§ a Black Box software testing technique, which basically

consists in finding implementation bugs using
malformed/semi-malformed data injection in an
automated fashion.

§A fuzzer is a program which injects automatically
semi-random data into a program/stack and detect
bugs.

52

Fuzzing example

Consider an integer in a program, which stores the
result of a user’s choice between 3 questions. When
the user picks one, the choice will be 0, 1 or 2,which
makes three normal cases.

But what if we transmit 3, or 255 ? We can, because
integers are stored a static size variable. If the default
switch case hasn’t been implemented securely, the
program may crash and lead to “classical” security
issues: (un)exploitable buffer overflows, DoS, …

53

Fuzz vectors (known-to-be-
dangerous values)

A common approach to fuzzing is to define lists of
“known-to-be-dangerous values” (fuzz vectors) for
each data type, and to inject them or
recombinations.
§ for integers: zero, possibly negative or very big

numbers
§ for chars: escaped, interpretable characters /

instructions (ex: For SQL Requests, quotes /
commands…)

§ for binary: random ones
54

Fuzzer categorization

§Generation-based: inputs are generated from
scratch

§Mutation-based: by modifying existing inputs
§Dumb or smart depending on whether it is aware

of input structure

§White-, grey-, or black-box, depending on whether
it is aware of program structure.

Goal

1.Find real bugs
2.Reduce the number of false positives

a.Generate reasonable input
b.If we’re expecting a string, passing a file will be rejected

before it even makes it to our code

Generated Input

1.Generate completely random input
a.Don’t necessarily control the input type
b.“Milk, 3.99” -> 9620

2.Understand the input type
a.“Milk, 3.99” -> (is a string) -> %&$#”

3.Understand the input structure
a.“Milk, 3.99” -> ‘\w+, \d\.\d\d’ -> “HFSDMEX, 8.43”

4.Formal approaches
a. Model-, Grammar-, Protocol-based fuzz
b. Useful when problem is well structured
c. Often impractical for large realworld programs

Mutation Fuzzing

1.Take existing input
2.Randomly modify it
3.Pass it to the program

Examples

1.A set of image files that will be randomly mutated

2.A set of logged input that will be randomly
modified

a.“Milk, 3.99” -> “Gilk, 2.99”

Problems

§An overwhelming number of false positives
§ False positives are very expensive as they require manual

effort
§ You put garbage in, what did you expect?

§ Focus on code coverage
§ Especially the formal method approaches
§ Coverage is less important than reasonable inputs

§Cleaning
§ Sanitizer: make the random input more reasonable
§ Minimization: eliminate redundant test failures through

diffing
§ Triage: finding similar outputs/stackdumps and grouping

them in the same bug report

Fuzz Summary
§ Test with reasonable random input

§ Goal: find real bugs
§ Problem: most failures are false positives that are expensive

§Used in practice
§ Google, Microsoft, Apple, etc use it especially in well

specified/controlled environments

§ Should you use it?
§ At a basic level it’s simple to add

§ Example: instead of testing the same int, test a random int in a range

§Why generate random input if you have real logged
input?
§ Use logged input that caused field failures
§ Turn this into a test case

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

Fuzzing tools

Open Source Mutational Fuzzers
• american fuzzy lop
• Radamsa - a flock of fuzzers
• APIFuzzer - fuzz test without coding
• Jazzer - fuzzing for the JVM
• ForAllSecure Mayhem for API

61

https://en.wikipedia.org/wiki/American_fuzzy_lop_%28fuzzer%29
https://github.com/aoh/radamsa
https://pypi.org/project/APIFuzzer/
https://github.com/CodeIntelligenceTesting/jazzer
https://forallsecure.com/mayhem-for-api

Self-protective
software

62

Self-protective software
§ Software security faces some challenges:

üAlmost every effort to ensure security is concentrated during
development and just before deployment, and the software remains
unprotected while running (except its periphery).

üStatic and penetration testing is controlled, but the use (or missuse)
of the software is not always expected.

§ To combat these challenges, researchers have suggested that
software defends itself.

§ As in the case of performance, where we have self-adaptive
systems, which can adapt their infrastructure to better
manage their performance, in case of security, we have self-
protective systems.

§ Generally, we talk about the self-protection of the
application during its execution (Runtime Application Self-
Protection (RASP)).

§ Methods of self-protection at the architectural level have
also been proposed (Architecture Based Self-Protection
(ABSP)). 63

Self-protection
§ RASP is implemented by inserting instructions into the application code

to monitor and protect it.
ü As in the case of instrumented profiling.
ü Alternatively, one can develop an external system that is attached to the

application.

§ The system monitor the application to recognize malicious activities and
finally protect the application by blocking the attack.

64

Self-protection : Advantages and
disadvantages

Advantages
§ RASP has increased accuracy.

ü The analyzed information is
alive and real.

ü Sometimes attacks are repeated,
so once detected, one can
detect all future attacks of the
same nature.

§ RASP not only detects
vulnerabilities or attacks, but can
also block them.
ü E.g., It can block an IP address

that has tried a lot of requests
(DoS attack).

§ RASP can defend the application
against both external and internal
threats.

Disadvantages
§ RASP can affect the performance

of the application that it protects.
ü Additional analysis may delay

response.

§ Protective actions can warn the
attacker.
ü The attacker knows that it is

detected and it can modify his
attack strategy.

§ RASP is as good as the expertise
and experience of security
professionals.

65

How can we prevent or detect the
OWASP Top 10 security issues?

66

