
LOG 8371E
Software Quality Engineering

Lecture 08:
Software Security and Security Testing
Heng Li, Assistant Professor

Armstrong

Armstrong
Armstrong Foundjem Ph.D. — Winter 2024



The Heartbleed Bug

§A vulnerability in the popular 
OpenSSL library
§ Allows anyone on the Internet 

to read the memory of the 
systems protected by the 
vulnerable versions of OpenSSL

§ Recorded as CVE-2014-0160
§Associated CWE: CWE-119
§ Exploits impacted many web 

applications (e.g., Canada 
Revenue Agency leaks SINs)

2

https://nvd.nist.gov/vuln/detail/cve-2014-0160
http://cwe.mitre.org/data/definitions/119.html


3
Source: https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/


Agenda

§ Vulnerabilities
§ Security testing in the SDLC
§ Static analysis (automated security review)
§ Penetration tests

References: 
OWASP Testing Guide 4.2. 2020
Common Weakness Enumeration: https://cwe.mitre.org
Common Vulnerabilities and Exposures: https://cve.mitre.org/index.html
OWASP Top Ten: https://owasp.org/www-project-top-ten/
OWASP ZAP Documentation. https://www.zaproxy.org/docs
SonarQube documentation: https://docs.sonarqube.org
SonarCloud documentation: https://docs.sonarcloud.io

4

https://cwe.mitre.org/
https://cve.mitre.org/index.html
https://owasp.org/www-project-top-ten/
https://www.zaproxy.org/docs/
https://docs.sonarqube.org/
https://docs.sonarcloud.io/


Topic’s topic in the SQA system

5



Vulnerabilities

6



Software security vulnerabilities

§ Vulnerability is a weakness in design, 
implementation, or operation.

§ Vulnerability becomes a problem if it becomes the 
point of an attack or an "exploit".

§ Vulnerabilities and exploits can result in lost 
money, private data, or life!

§ The system can be protected by identifying 
vulnerabilities through static analysis, penetration 
testing or code reviews.

7



Attackers exploit the weaknesses of the 
application to do harm to business or 
organization

8

Weakness

Attack

Threat
Agents

ImpactWeakness

Attack

Attack
Vectors

Security
Weaknesses

Technical
Impacts

Business
Impacts

Attack

Impact

Impact

Asset

Function

Asset

Weakness

Control

Control

ControlWeakness

Security
Controls



9

Window of vulnerability



Vulnerabilities causes

1. Old, unpatched vulnerabilities.
üA vulnerability can be identified and described, but developers 

do not correct it immediately.
2. Human errors

üThose include bugs, weak passwords, private data sharing.
3. Malware

üThey cause minor problems but in large quantities and with a 
lot of variability.

4. Insider abuse
üThe most dangerous vulnerabilities and what require internal 

security measures.
5. Physical theft

üPersonal devices that must be physically protected too.

10



CWE and CVE

§Common Weakness Enumeration (CWE)
§ A community-developed list of software and hardware 

weakness types;
§ Example: CWE-20 (Improper input validation)
§ A common language, a measuring stick for security tools
§ https://cwe.mitre.org

§Common Vulnerabilities and Exposures (CVE)
§ A list of publicly disclosed cybersecurity vulnerabilities
§ Example: CVE-2021-44228 (Apache Log4j2 vulnerability)
§ https://cve.mitre.org/index.html

11

https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/
https://nvd.nist.gov/vuln/detail/
https://cve.mitre.org/index.html


OWASP Top 10 Vulnerabilities 
(2017)

A1 – Injection
A2 – Broken Authentication and Session 
Management
A3 – Cross-Site Scripting (XSS)
A4 – Broken Access Control
A5 – Security Misconfiguration
A6 – Sensitive Data Exposure
A7 – Insufficient Attack Protection
A8 – Cross-Site Request Forgery (CSRF)
A9 – Using Components with Known Vulnerabilities
A10 – Underprotected APIs

12Source: https://owasp.org/www-project-top-ten/2017/Top_10

https://owasp.org/www-project-top-ten/2017/Top_10


Security Testing

13



Security tests

§ Security testing is the process to ensure that 
mechanisms established to ensure security are not 
defective.

§ The success of security tests does not imply the 
absence of security defects.

§ Security testing controls security requirements.
üConfidentiality, integrity, non-repudiation, accountability, 

authenticity.

14



When to test?

§ Ensure that security is an 
integral part of the 
development process

§Consider security tests in 
each phase of SDLC

§ Test early and test often
§ When a bug is detected 

early within the SDLC it 
can be addressed faster 
and at a lower cost

15

Software Development 
Life Cycle (SDLC)



Testing techniques
§Manual inspections & reviews

§ Manually examine the security implications of people, 
policies, processes, technical decisions (e.g., designs)

§Threat modeling
§ Risk assessment for applications

§ Source code review
§ Manually check the source code for security issues

§ Static analysis (automated code review)
§ Automatically check the code to find vulnerabilities 

according to known rules or templates

§Penetration testing (ethical hacking)
§ Simulate a malicious attack and identify the degree of 

sensitivity of the vulnerabilities
16



Manual inspections & reviews
§ Definition

§ Manually examine the security implications of people, policies, 
processes;

§ Also include inspection of technical decisions (e.g., architectural 
designs);

§ Usually conducted by analyze documentation or performing 
interviews with designers or system owners

§ Advantages
§ Can be applied to a variety of situations;

§ Flexible; 

§ Promotes teamwork;

§ Early in the SDLC;

§ Disadvantages
§ Can be time consuming (analyzing docs, interviews); 
§ Supporting material not always available
§ Requires significant human thought and skill to be effective 18



Threat modeling
§ Definition

§ Risk assessment for applications;
§ Help system designers think about the security threats that their 

systems and applications might face;
§ Enables the designer to develop mitigation strategies for potential 

vulnerabilities
§ The NIST 800-30 standard approach

§ Decomposing the application – use a process of manual 
inspection to understand how the application works, its assets, 
functionality, and connectivity.

§ Defining and classifying the assets – classify the assets into 
tangible and intangible assets and rank them according to business 
importance.

§ Exploring potential vulnerabilities - whether technical, 
operational, or managerial.

§ Exploring potential threats – develop a realistic view of 
potential attack vectors from an attacker’s perspective by using 
threat scenarios or attack trees.

§ Creating mitigation strategies – develop mitigating controls 
for each of the threats deemed to be realistic.

19



Threat modeling
§ Advantages

§ Practical attacker view of the system

§ Flexible; 

§ Early in the SDLC;

§ Disadvantages
§ Good threat models don’t automatically mean secure 

software

20



Source code review
§ Definition

§ Manually check the source code for security issues;
§ Almost all security experts agree that there is no substitute for actually 

looking at the code;
§ Many serious security vulnerabilities are hard to be detected with any 

other form of analysis or testing, such as concurrency problems, flawed 
business logic, access control problems, and cryptographic weaknesses.

§ Advantages
§ Completeness and effectiveness;

§ Accuracy;

§ Fast (for competent reviewers)

§ Disadvantages
§ Requires highly skilled security aware developers
§ Can miss issues in compiled libraries
§ Cannot detect runtime errors easily

21



Static analysis (automated code review)

§ Definition
§ Using static analysis tools to automatically check the code to 

find vulnerabilities according to known rules or templates; 
§ Useful in determining security issues due to coding errors.

§ Advantages
§ Fast.

§ Disadvantages
§ Cannot identify issues due to flaws in the design;
§ False positives (significant manual effort required to validate 

the results).

22



Penetration testing
§ Definition

§ Simulate a malicious attack and identify the degree of sensitivity of the 
vulnerabilities

§ Also known as ethical hacking.
§ Without knowing the inner workings of the target itself (black-box 

testing).
§ The tester is usually given one or more valid accounts on the system.

§ Advantages
§ Fast;
§ Lower skill-set requirement than source code review
§ Tests the code that is actually being exposed

§ Disadvantages
§ Late in the SDLC;
§ Front-impact testing only;
§ Gary McGraw: “a penetration test can only identify a small 

representative sample of all possible security risks in a system”.

23



What techniques to use?

§No Silver Bullet
§ No right or wrong answer to the question of exactly 

which techniques should be used

§ Penetration testing is “too tittle too late”
§ Historically, many companies have adopted a single 

approach (often penetration testing)

§A balanced approach should cover testing in all 
SDLC phases
§ Include several techniques, from manual reviews to 

technical testing

25



Balanced representations of testing effort

26

Proportion of test effort by 
test technique

Proportion of test effort in 
SDLC



Why automated black-box testing 
may not be effective?

Example: Bad Cryptography
§ Imagine that a developer decided to write a simple cryptography 

algorithm to sign a user in from site A to site B automatically. In their 
wisdom, the developer decides that if a user is logged into site A, then 
they will generate a key using an MD5 hash function that comprises: 
Hash {username : date}.

§ When a user is passed to site B, they will send the key on the query 
string to site B in an HTTP redirect. Site B independently computes the 
hash, and compares it to the hash passed on the request. If they match, 
site B signs the user in as the user they claim to be.

§ Is there a security issue?

§ Can automated black-box testing detect the issue? If not, what 
approaches can?

27



Derive and elicit security 
requirements

High-level testing objectives:
§ proving confidentiality, integrity, and availability of 

the data as well as the service;
§ validate that security controls are implemented 

with few or no vulnerabilities

29



Derive and elicit security 
requirements
Two types of security requirements:
§ Positive (functional) Requirements: These describe 

the appropriate functionality of the system. Examples:
üThe application will lockout the user after six failed log on 

attempts
üDo not show specific validation errors to the user as a 

result of a failed log on

§ Negative (risk-oriented) Requirements: These 
describe what the application should not do. Example:
üThe application should not allow for the data to be altered 

or destroyed.
üThe application should not be compromised or misused 

for unauthorized financial transactions by a malicious user.

§ Which is more difficult?
30



Derive security requirements from 
use and misuse cases

§Use cases (from a normal user point of view)
§ Describe what the application is supposed to do and 

how
§ Show the interactions of actors and their relations

§Misuse or abuse cases (from an attacker point 
of view)
§ Describe unintended and malicious use scenarios
§ Describe scenarios of how an attacker could misuse and 

abuse the application

31



Derive security requirements from 
use and misuse cases
Example: for the case of authentication
§ Step 1: Describe the functional scenario

§ User authenticates by supplying a username and password. 
§ The application grants access to users based upon 

authentication of user credentials by the application.
§ The application provides specific errors to the user when 

validation fails.
§ Step 2: Describe the negative scenario

§ Attacker breaks the authentication through a brute force or 
dictionary attack of passwords and account harvesting 
vulnerabilities in the application. 

§ The validation errors provide specific information to an 
attacker that is used to guess which accounts are valid 
registered accounts (usernames). 

§ The attacker then attempts to brute force the password for a 
valid account. 

32



Derive security requirements from 
use and misuse cases
Example: for the case of authentication
§ Step 3: Describe functional and negative 

scenarios with use and misuse case
§ The functional scenario consists of the user actions 

(entering a username and password) and the application 
actions (authenticating the user and providing an error 
message if validation fails).

§ The misuse case consists of the attacker actions, i.e. 
trying to break authentication by brute forcing the 
password via a dictionary attack and by guessing the 
valid usernames from error messages.

§ By graphically representing the threats to the user 
actions (misuses), it is possible to derive the 
countermeasures as the application actions that mitigate 
such threats.

33



34

Use and misuse case 
(authentication)



Derive security requirements from 
use and misuse cases
Example: for the case of authentication
§ Step 4: Elicit security requirements

§ Passwords requirements must be aligned with the 
current standards for sufficient complexity.

§ Accounts must be to locked out after five unsuccessful 
log in attempts.

§ Log in error messages must be generic.

35



Integrating security tests in 
development and testing workflows

§ Security testing in the development workflow
§ Source code analysis (static)

§ Potential vulnerabilities
§ Compliance with secure coding standards

§ Security unit tests (dynamic)
§ Components function as expected

§ Secure code review
§ Usually led by senior developers

36



Integrating security tests in 
development and testing workflows

§ Security testing in the test workflow
§ Integration test

§ identifying vulnerabilities due to integration of components
§ System test, user acceptance test, and operation tests

§ Most representative of the deployment configuration

37



Security test data analysis and 
reporting

§ Defining security testing metrics
§ E.g., the number of vulnerabilities found with security tests
§ Used for risk analysis and management processes, compare

against a baseline.

§ Reporting testing results
§ a categorization of each vulnerability by type;
§ the security threat that each issue is exposed to;
§ the root cause of each security issue, such as the bug or flaw;
§ each testing technique used to find the issues;
§ the remediation, or countermeasure, for each vulnerability; 

and
§ the severity rating of each vulnerability (e.g., high, medium, 

low, or CVSS score).

38



OWASP 
Testing 
Framework

40

A reference 
framework that 
comprises techniques 
and tasks that are 
appropriate at various 
phases of the SDLC



OWASP 
Testing 
Framework

41

A reference 
framework that 
comprises techniques 
and tasks that are 
appropriate at various 
phases of the SDLC



Phase 1: Before development 
begins

§Define a SDLC
§ An adequate SDLC must be defined where security is 

inherent at each stage

§Review policies and standards
§ Ensure that there are appropriate security policies, 

standards, and documentation in place

§Develop measurement and metrics 
criteria and ensure traceability
§ Defining criteria that need to be measured, which 

provides visibility into defects in both the process and 
product.

42



OWASP 
Testing 
Framework

43

A reference 
framework that 
comprises techniques 
and tasks that are 
appropriate at various 
phases of the SDLC



Phase 2: During definition and 
design

§Review security requirements
§ Security requirements define how an application works 

from a security perspective.
§ Security requirements should be unambiguous

§ “Users must be registered before they can get access to the 
whitepapers section of a website.”

§Review design and architecture
§ Ensure that the design and architecture enforce the 

appropriate level of security as defined in the 
requirements.

§ Cost-efficient to identify flaws and make changes.

44



Phase 2: During definition and 
design (cont’d)

§Create and review UML models
§ Build UML models that describe how the application 

works.
§ UML models can help identify weaknesses.

§Create and review threat models
§ Develop realistic threat scenarios.
§ Analyze the design and architecture to ensure that these 

threats have been mitigated.
§ When identified threats have no mitigation strategies, 

revisit and modify the design and architecture.

45



OWASP 
Testing 
Framework

46

A reference 
framework that 
comprises techniques 
and tasks that are 
appropriate at various 
phases of the SDLC



Phase 3: During development

§ Code walkthrough
§ The security experts perform a code walkthrough with the 

developers. 
§ A code walkthrough is a high-level look at the code during 

which the developers explain the logic and flow of the 
implemented code.

§ Code reviews
§ The security experts examine the actual code for security 

defects:
§ Business requirements for availability, confidentiality, integrity
§ Standard vulnerabilities (e.g., OWASP 10 10 checklists)
§ Language-specific issues (e.g., Microsoft security coding checklist 

for ASP.NET)
§ Industry-specific requirements (e.g., Sarbanes-Oxley 404)

§ Unit and system tests
47



OWASP 
Testing 
Framework

48

A reference 
framework that 
comprises techniques 
and tasks that are 
appropriate at various 
phases of the SDLC



Phase 4: During deployment

§Application penetration testing
§ Conducted after the application has been deployed.
§ Provides an additional check to ensure that nothing has 

been missed.

§Configuration management testing
§ Examination of how the infrastructure was deployed and 

secured.

49



OWASP 
Testing 
Framework

50

A reference 
framework that 
comprises techniques 
and tasks that are 
appropriate at various 
phases of the SDLC



Phase 5: During maintenance and 
operations

§Conduct operational management 
reviews
§ Review how the operational side of both the application 

and infrastructure is managed.

§Conduct periodic health checks
§ Monthly or quarterly health checks should be 

performed on both the application and infrastructure to 
ensure no new security risks have been introduced and 
that the level of security is still intact

§Ensure change verification
§ Each change is checked to ensure that the level of 

security has not been affected by the change 51



Static analysis 
(automated security 

review)

52



Static analysis

§ Code scanning before deployment and execution to 
find vulnerabilities (and other bugs).

§ Identifying vulnerabilities in the early stages of 
development is ideal.

§ Techniques :
üData flow analysis: The collection of dynamic information in a 

static way; how the data is processed by the instructions.
üControl Flow Graph: An abstract representation of the 

software that shows dependencies between instructions and 
code blocks.

üTaint Analysis: Identifying variables "polluted" by users and 
plotting them to potential points of vulnerabilities.

53



Static analysis

Limitations
§ False positives: The tool 

detects a vulnerability that is not 
really a problem. 

§ False negatives: A 
vulnerability exists, but it is not 
detected by the tool. 

Selecting tools
§ Language and technology of the 

analyzed software.
§ Types of vulnerabilities detected 

by the tool.
§ Can it resolve dependencies 

automatically?
§ Does it require source files or 

binary files?
§ Can it be integrated with IDEs?
§ Is it accurate?
§ Is it easy to install / configure / 

use?

55



Tutorial for Static 
Analysis

56



Penetration Tests

57



Penetration tests (PT)

§ PT is a simulated and authorized attack to reveal 
possible exploits and their severity due to 
vulnerabilities.

§ The tests can reveal the vulnerabilities but also the 
power of the system to defend itself.

§ The tests can be performed in the form of a "black 
box” (typically) or in the form of a "white box".

§ They can be performed internally by the 
organization or by external authorities or experts.

58



PT: Phases
§ Recognition

ü The activity acquires important information for the target system. The 
information will improve the attack.

§ Scanning
ü Using automatic tools, the attacker gains more information. For example, we can 

find which ports are open or which input fields are vulnerable.

§ Get access
ü Exploit identified vulnerabilities to attack the system or increase the level of 

authorization.

§ Maintain access
ü Activities to be able to stay in the system and get as much information as 

possible.

§ Cover the tracks
ü For the attack to succeed, the attacker must erase all traces that the software 

has been compromised.

§ Climbing
ü After a resource (a machine or a component of the software) is compromised, 

the attacker can continue the attack to the other resources with the 
information obtained by the first step of the attack.

59



Scenario

§ The initial discovery revealed a misconfigured DNS server 
that gave access to a list of hosts.

§ One of these hosts contained an interface of an 
administrative server protected by a password.

§ The attacker was able to find the password with a brute 
force attack.

§ The administrative interface has been vulnerable to remote 
code injections.

§ The attacker got access to the operating system.

§ An attack on a Java applet gave access to all machines used 
by administrators.

§ The attack managed to compromise the entire system.

60



Results - Reports

§ Vulnerability: "Username and password weak or default (eg admin-
admin). "

ü Risk: High

§ Vulnerability: "Password reused. "
ü Risk: High

§ Vulnerability: "Shared local administrator password (multiple hosts had
the same passwords). "

ü Risk: High

§ Vulnerability: "Patch management (multiple hosts have not been 
updated). "

ü Risk: High

§ Vulnerability: "DNS zone transfer (DNS server incorrectly configured). "
ü Risk: Low

§ Vulnerability: "Apache file by default. "
ü Risk: Low

61



Penetration test vs Static 
analysis

Penetration test
§After the deployment.
§Must combine with 

manual efforts.
§ Increase the certainty

of the risks.

Static analysis
§During the 

development.
§Mostly automatic, but 

with the risk of false 
positives.

§Capable of early 
identification and 
minimization of 
correction costs.

62



Tutorial for 
Penetration Tests

71



TP3 - Security

§ Static analysis
§Penetration testing
§Due on December 1st

72


