
LOG 8371E
Software Quality Engineering

Lecture 06:
Software Performance Models

Heng Li, Assistant Professor

Armstrong

Armstrong
Armstrong Foundjem Ph.D. — Winter 2024

2

Review:
Software Performance Engineering

(Ultra) Large-Scale Software Systems

450 million active users
> 50 billion messages every day

4 million users
2600-3000 req/sec on most weekdays

Rapid Growth and
Varying Usage Patterns

0

200

400

600

800

1000

1200

2005 2006 2007 2008 2009 2010 2011 2012

User Growth Over the Years (in millions)

Facebook Twitter LinkedIn WordPress Tumblr Google+ Pinterest

Failures of large-scale systems are
often due to performance issues
rather than functional bugs

6

Loading

A page load slowdown of only one
second could cost $1.6 billion

7

Software Performance
Engineering (SPE)

§ The set of tasks or activities that need to be
performed across the Software Development Life
Cycle (SDLC) to meet the documented Non-
Functional Requirements (Performance, Scalability,
Availability, Reliability, etc.)

9

10

Software Development Life
Cycle

Performance Engineering Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

System Test & User Acceptance
Test

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

Source: https://tangowhisky37.github.io/PracticalPerformanceAnalyst/pages/
spe_fundamentals/performance_engineering_101/

Performance Testing

Mimics multiple users repeatedly performing the same tasks
Take hours or even days

Produces GB/TB of data that must be analyzed

Test Design Test Execution Test Analysis

Performance
Test Process

12

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Performance
Test Process

13

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Designing Performance Tests

Designing
Realistic Loads

Designing Fault-
Inducing Loads

Load Design Optimizations
and Reductions

Designing Realistic Loads

Aggregate Workload

Login
10%

Browse
80%

Purchase
5%

Logout
5%

100%

An E-Commerce System

Steady Load, Step-wise load,
Extrapolated load

Use-Case

Login

Browse

Purchase

Logout

Load Derived from UML, Markov and
Stochastic Form-oriented Models

Login

Search Purchase

Browse

…

…

0.4

0.6

0.8

0.15

0.05

0.05

0.95

Use-Case (2)
- Markov Chain

Performance
Test Process

16

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Executing Performance Tests
Live-user

Based
Execution

Driver Based
Execution

Emulation
Based

Execution
Setup

Load Generation and Termination

Test Monitoring and Data Collection

Live-user Based Test Execution

• Coordinated live-user testing
• Users are selected based on different

testing criteria (e.g., locations, browser
types, etc.)

C Reflects realistic user behavior
C Obtain real user feedbacks on

acceptable performance and
functional correctness

D Hard to scale (e.g., limited
testing time)

D Limited test complexity due to
manual coordination

Driver-based Test Execution

C Easy to automate
C Scale to large number of requests

D Load driver configurations
D Hard to track some system behavior

(e.g., audio quality or image display)

• Specialized Benchmarking tools (e.g., LoadGen)
• Centralized Load Drivers (e.g, LoadRunner, WebLoad)

o Easy to control load, but hard to scale (limited to a machine’s memory)
• Peer-to-peer Load Drivers (e.g., JMeter, PeerUnit)

o Easy to scale, but hard to control load

Performance
Test Process

19

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Analyzing Performance Data

Verifying
Against

Threshold
Values

Detecting
Known

Problems

Building
Performance

Models

Sample Counters

Sample Execution Logs

Version 1 Version 2

Threshold from a
prior version

Threshold from
requirement

Verifying Against Threshold Values

Looking for known patterns:
Deadlocks and memory leak

Performance data under steady load

[Avritzer et al., 2012]

CPU

Memory

Queuing (white box)
Model

Machine learning
(Black box) model

Anomaly

Profiling

§ A form of dynamic program analysis that measures the
complexity of the program in terms of space (memory) or
time, or the frequency and duration of function calls.

§ Its objective is the optimization of the program and
the management of resources.

§ It is a process that helps to understand the behavior of a
program.

§ It also helps evaluate and compare performance of different
architectures.

§ Profiling has two important components: instrumentation
and sampling.

25

Profiling: Instrumentation

§ It is possible to collect data by external tools, but this data is not
detailed enough and of a sufficient level of granularity.

§ For this reason, instrumentation is used.
§ A technique that adds code (probes) in the monitored program to

collect performance data.

§ It is possible to add probes at several levels of the system.
§ Source code (manually or automatically)
§ Assisted by the compiler
§ Binary code

§ Motivation for profiling:
§ Collect exactly the data needed and infer the locality of the data.
§ Control the granularity of data.
§ Control the measurement process by activating and deactivating

probes.

26

Profiling: Sampling

§ Sampling does not affect the execution of the program.
§ No instruction is inserted in the source elbow nor in the compiled

code.

§ The operating system suspends the CPU at regular intervals
and the profiler records the instruction that is currently
executing.

§ The profiler correlates the instruction with the
corresponding point in the code.

§ The profiler returns the frequency of execution of code
points.

§ Repeat profiling with sampling several times to obtain
statistical significance.

27

Profiling: Automated Profiling

§ Automated profiling facilitates optimization and guarantees
continuous integration and continuous quality assurance.

§ It also reduces optimization costs.

§ Profiling tools are able to calculate a large number of
measurements and produce detailed reports.

§ Warning! Some profiling methods are characterized as
intrusive, which can affect the results of the process.

28

Profiling à
Performance testing
§ We can use profiling to

understand the behavior of
our program ...

§ ... and identify the use of
resources (CPU, memory
etc.)

§ After that, we can define the
thresholds and objectives for
the performance and test
them.

§ We can also train or provide
inputs for our performance
models.

Performance testing à
Profiling
§ Testing will indicate the

presence of performance
issues.

§ According to this indication,
profiling will reveal the exact
point of the bottleneck.

§ After, we optimize the code
and rerun the tests.

29

Profiling vs Performance testing

Exercise from last class: Design
realistic loads for performance testing

§ Based on the following sample logs, design a use-
case model using the Markov chain

30

Exercise from last class: Design
realistic loads for performance testing

31

Start

Update
profile

Browse Search
1.0

0.6
7

0.33

Today: Software Performance Models

§ Software Performance Modeling (SPM)
§ Execution graphs
§ Queuing Networks
§ Machine learning based performance models

§ References:
§ Jain, Raj. The art of computer systems performance analysis - techniques for

experimental design, measurement, simulation, and modeling.Wiley professional
computing, 1991.

§ Gao, Ruoyu, et al. A framework to evaluate the effectiveness of different load
testing analysis techniques. ICST ’16.

§ Connie U. Smith. Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addision-Wesley. 2001.

§ Kaushal Kumar’s lecture slides for course Software Performance Analysis at
Queen’s University: https://research.cs.queensu.ca/home/elgazzar/soft437/

32

https://research.cs.queensu.ca/home/elgazzar/soft437/

Software Performance Models (SPM)

§ Formal representations
of the software to
capture aspects and
information of the
performance.

§ Built as early as design
and architecture models
to express and
understand the non-
functional requirements.

33

Software Performance Models (SPM)

§ They allow us to:
üEstimate the performance of the software.
üEstimate resource needs.
üIdentify performance issues as early as possible.
üSimulate the execution of the software under

certain conditions (number of users and size of
the infrastructure).

üEstablish software performance for medium,
best, and worst case scenarios.

34

Software Performance Models (SPM)

§ SPM sometimes provide a graphical representation of
the system's execution that matches its structure.
§ It is possible to produce the performance models by

transforming the design models.

§ While the design models of the system capture the
static aspects, the performance models capture the
dynamic aspects.

§ Types of performance models:
§ Software Execution Models
§ Queuing Networks (System Execution Models)
§ Machine learning based models
§ Others (e.g., Stochastic Petri Nets)

35

36

Software Execution Models

Software Execution Models

§ Constructed early in the development process to
ensure that the chosen software architecture can
achieve the required performance objectives

§ Captures essential performance characteristics of the
software

§ Provides a static analysis of the mean, best, and worst-
case response time

§ Characterizes the resource requirements of the
proposed software alone, in the absence of other
workloads, multiple users or delays due to contention
for resources

37

Software Execution Model (con’t)

§ Software execution models are generally sufficient
for identifying serious performance problems at the
architectural and early design phases

§We can refine software execution model in the
critical areas

38

The absence of problems in the software model does not
mean that there are none

Execution graphs

§ Execution graphs are one type of software execution
model.

§ The graphs represent the execution (a sequence of
operations) of the system.
üAn execution graph is constructed for each performance

scenario.
§ Execution graphs are not sufficient for a complete

analysis of software performance, but they work well
for understanding the software and its non-functional
requirements.
üThe special annotation can give us an idea of the

performance.
üWe can combine the graphs with other models (like QN we

will see) to complement the analysis.

39

Graph notation

40

Node types Graph notation Description
Basic nodes Represent processing steps at the lowest

level of detail that is appropriate for the
current development stage

Expanded
nodes

Represent processing steps elaborated in
another subgraph

Repetition
nodes

Subsequent nodes are repeated n times: the
last node has an edge to the repeat node

Case node Represent conditional execution of
processing steps; each attached node has a
probability of execution

Pardo node Attached nodes run in parallel: All nodes
must complete (join) before proceeding.

Division node Attached nodes represent new processing
threads; they need not all complete before
proceeding.

Example: General ATM Scenario

41
From book: Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software

Software Execution Model
Analysis

§ Primary purposes of software execution model
analysis are
§ Make a quick check of the best-case response time in

order to ensure the architecture and design will lead to
satisfactory performance

§ Assess the performance impact of alternatives
§ Identify critical parts of the system for performance

management
§ Derive parameters for the system execution model

§ The algorithms are formulated for evaluating graphs

42

Basic Solution Algorithms

§ The algorithms are ‘easy’ to understand
§ Examine graphs and identify a basic structure
§ Compute the time of a basic structure and reduce the

basic structure to a ‘computed node’
§ Continue until only one node left

§ Basic structures are
§ Sequences
§ Loops
§ Cases

43

Graph Reduction for Sequential
Structures

44

Graph Reduction for Loop
Structures

45

Graph Reduction for Case Nodes

§ The computation for case nodes differs for
shortest path, longest path, and average analyses
§ Shortest path: the time for the case node is the

minimum of the times for the conditionally executed
nodes

§ Longest path: the time for the case node is the
maximum of the times for the conditionally executed
nodes

§ For the average analysis: the time is multiplying each
node’s time by its execution probability

46

Graph Reduction for Case Nodes

47

Exercise: ATM Scenario
What’s the best, worst, and average execution
time?

48

To illustrate the basic path reductions, consider the ATM scenario in Figure
4-3 and the subgraph for processTransaction in Figure 4-4. Assume the node
“times” in the following table.

Analysis Procedures

§Use both the best-and the worst-case estimates of
resource requirements for each basic node

§ Begin with a simplistic analysis of the best case and
introduce more sophisticated analyses of realistic
cases as more detailed information becomes
available

49

Software Resource Requirements

§ Each basic node has specified SW resource
requirements Aj for each service unit j, e.g.

50

Processing Overhead Matrix

§A chart of the computer resource requirements for
each of the software resource requests

51

Computing the total execution time

§ STEP 1: uses the processing overhead matrix to
calculate the total computer resources required
per software resource for each node in the graph

52

53

Computing the total execution time

§ STEP 2: computes the total computer resource
requirements for the graph

54

Computing the total execution time

§ STEP 3: compute the
best-case elapsed time

553,110*0.00001 14*0.02 1*0.01+ + = 0.32

Exercise: processTransaction scenario
Estimate the best, worst, and average execution time

56

UML Execution graph

validateUser

processBalanceInquiry

processWithdrawal

processDeposit

sendResult

0.001

0.7

0.299

59

validateUser

processBalanceInquiry

processWithdrawal

processDeposit

sendResult

0.001

0.7

0.299

Server 4

DB 1
Msgs 1

Server 3
DB 1

Msgs 2

Server 1

DB 1
Msgs 1

Server 4

DB 2
Msgs 2

Server 0
DB 0

Msgs 1

Ressources CPU Disk Network
Quantity 1 1 1

Service unit KInstr. I/O Msgs

Server 800 0 0
DB 200 2 1

Msgs 10 2 1

Service time 0.000015 0.005 0.001

Exercise: processTransaction scenario
Estimate the best, worst, and average execution time

61

Queuing Network Models
(System Execution Models)

Software Execution Models vs.
Queuing Network Models
§ Software execution models

§ provide a static analysis of the mean, best-and worst-
case response times for software

§ characterize the resource requirements of the proposed
software alone, in the absence of other workloads or
multiple users

§Queuing network models (QNM)
§ characterize the software’s performance in the presence

of dynamic factors, such as other work loads or multiple
users

§ aim to solve the contention for resources

62

If the software execution model indicates that there are no problems,
then you are ready to construct and solve the queuing networks to

account for contention efforts

Benefits of QNM

§ More precise metrics that account for resource contention

§ Sensitivity of performance metrics to variations in workload
composition

§ Scalability of the hardware and software to meet future
demands

§ Effect of new software on service level objectives of other
systems

§ Identification of bottleneck resources

§ Comparative data on performance improvement options

63

Sources of Contention for
Resources

§Multiple users of an application or transaction
executing at one time, e.g. several ATM customers
do a withdrawal simultaneously

§Multiple applications or systems executing on the
same hardware resources at one time

§ The application under consideration can have
separate concurrent processes

§ The application may be multi-threaded to handle
concurrent requests for different external
processes

64

QNM Basics: Queues

§ The basic component of
queuing networks is a
queue, also referred to as a
service station or service
center.

§ A queue consists of a waiting
line and a server (e.g., CPU,
disk, network), which serves
incoming requests (a queue
can have multiple servers)

66

Wait time Service
time

Residence time

Performance Metrics

§ Performance metrics of interest for each server are
§ Residence time, RT: the average time jobs spend in the

server, in service and waiting
§ Utilization, U: the average percentage of the time the

server is busy
§ Throughput, X: the average rate at which jobs

complete service
§ Queue length, N: the average numbers of jobs at the

server (receiving service and waiting)

67

Performance Metrics (con’t)

§ The value of these metrics depend on
§ The number of jobs
§ The amount of service they need
§ The time required for the server to process individual

jobs
§ The policy used to select the next job from the queue

(e.g., the first-come-first-served or priority scheduling)

68

Execution Profile

69

Execution Profile (con’t)

§ From the execution profile, we obtain the following
data:
§ Measurement period, T 20 sec
§ Number of arrivals, A 8 jobs
§ Number of completions, C 8 jobs
§ Busy time, B 16 sec

70

Calculation of Performance Metrics

§ Utilization, U = B/T

§ Throughput, X = C/T

§ Mean service time, S = B/C

§ Area under graph, W = ∑!"#$(# 𝑜𝑓 𝑗𝑜𝑏𝑠)
§ Residence time, RT = W/C

§ Queue length, N = W/T

71

T: Total Period
C: Completed
B: Busy Time

Calculation of Performance Metrics

§ Utilization, U = B/T = 0.8

§ Throughput, X = C/T = 0.4 jobs/sec

§ Mean service time, S = B/C = 2 sec

§ Area under graph, W = ∑!"#$(# 𝑜𝑓 𝑗𝑜𝑏𝑠) = 41 jobs

§ Residence time, RT = W/C = 5.125 sec

§ Queue length, N = W/T = 2.05 jobs

72

T: Total Period = 20
C: Completed = 8
B: Busy Time = 16

Solving the Queueing Model

§Use similar calculations, based on predicted
workload intensity and service requirements

§Workload intensity is a measure of the number
of requests made by a workload in a given time
interval

§ Service requirements are the amount of time
that the workload requires from each of the
devices in the processing facility

73

Solving the Queueing Model (con’t)

§Assume that the system is fast enough to handle
the arrivals, and thus the completion rate or
throughput equals the arrival rate

§ This property is called jobs-flow balance

74

Example

§ Workload intensity
§ Arrival rate, 𝜆 = 0.4 jobs per sec

§ Service requirements
§ Mean service time, 𝑆 = 2 sec

We then calculate the following average values:
§ Throughput, 𝑋 = 𝜆
§ Utilization, 𝑈 = 𝑋𝑆 (Utilization Law)

§ Residence time, 𝑅𝑇 = !
"#$

§ Queue length, 𝑁 = 𝑋 ∗ 𝑅𝑇 (Little Law)

75

Exercise: Use of Utilization Law

§A network segment transmits 1,000 packets/sec.
Each packet has an average transmission time equal
to 0.15 msec. What is the utilization of LAN
segment?

76

Exercise: Use of Little Law

§An NFS server was monitored during 30 minutes
and the number of I/O operations performed
during the period was found to be 10,800. The
average number of active NFS requests was found
to be three. What was the average response time
per NFS request at the server?

77

Queuing Network Models
§ A queueing network (QN) consists of two or more queues

(service stations) that are connected together and serve
requests sent by clients.

§ The routing of requests in the queueing network is specified
by a probability matrix.

78

Types of QNM

§Open models
§ The requests come from a source that is external of the

queueing network and leave the network after service
completion

§Closed models
§ No external source of requests and no departing

requests (the population of requests in the queueing
network remains constant)

§Mixed models
§ Open for some workload classes and closed for others

79

Open QNM

80

Open QNM (con’t)

§Open QNM is appropriate for systems with
external arrivals and departures, such as ATM

§ For an open QNM, specify the workload
intensity and service requirements

§ The workload is the arrival rate that rate at
which jobs arrive for service

§ The service requirements are the number of
visits for each device, and the average service
time per visit, or the total demand for that
device

81

Open QNM Computation

82

Open QNM Computation

84

Example: Open QNM Solution

85

Example: Open QNM Solution

86

Example: Open QNM Solution

87

Exercise: what if the arrival rate
doubles?

88

10
5

Exercise: what if the arrival rate
doubles?

89

Closed QNM

§Closed QNM has no external arrivals or departures
§A fixed number of jobs keep circulating among queues

94

Solving Closed QNM

§ This model needs
§ The number of users (or the number of

simultaneous jobs)
§ The think time, i.e., the average delay between the

receipt of a response and the submission of the next
§ Number of visits
§ Service time
§ Total demand for each device

95

Deriving System Model Parameters
from Software Model Results

§ Step 1: use queue-servers to represent the key computer
resources or devices that you specified in the software
execution model and add the connections between queues
to complete a model topology

§ Step 2: decide whether the system is best modeled as an
open or closed QNM

§ Step 3: determine the workload intensities for each
scenario

§ Step 4: specify the service requirements

96

Example: ATM
authorizeTransaction Scenario

97

Example: ATM
authorizeTransaction Scenario

98

Example: ATM
authorizeTransaction Scenario

99

Modeling Hints

§ Multiple users and workload (e.g., arrival rate, the
number of users, and think time)

§ Average vs. Peak Performance
§ Basis QNMs calculates average values

§ Sensitivity: if a small change in one parameter causes a
large change in the computed metrics, the model is
sensitive to that quantity

§ Scalability: improves response times for your
anticipated future loads

§ Bottlenecks: the bottleneck device is the one with the
highest utilization

100

101

Machine learning based
performance models

Drawbacks of Queuing Network
models

§ Require extensive knowledge of the software and
system

§Cannot handle passive resources (resource that are
required for processing but do no work themselves,
e.g., memory)

§Only estimates average metrics; cannot estimate
minimum, maximum, variance, distributions, etc.

§Difficult to scale to large-scale software systems

102

§Can we treat of the software and system as a
black-box?

Black-box (machine learning
based) performance models

103

Workloads Perf. Metrics

Black-box (machine learning
based) performance models

104

Workloads Perf. Metrics

𝑋 𝑓(𝑋) 𝑌

Black-box (machine learning
based) performance models

105

Workloads Perf. Metrics

𝑋 𝑓(𝑋) 𝑌

Given workloads (X) and measured performance metrics
(Y), we can train a machine learning model (Y = f(X))

Workloads (independent variables)

106

Timestamp Log line
00:00 Load data by Alice with size 32768 bytes
00:02 Read data by Alice with size 2048 bytes
00:03 Read data by Dan with size 1024 bytes
00:05 Read data by Alice with size16384 bytes
00:06 Write data by Alice with size 8192 bytes

In the six seconds:
X(Load) = 1; X(Read) = 3; X(Write) = 1

Performance metrics (dependent
variables)

§Utilization (CPU, memory, disk, network)
§ Response time
§ Throughput
§ Power consumption
§ Battery

§…

108

How to collect performance
metrics?

109

Task Manager
JConsole

CA Willy

App Dynamics pidstat

Monitoring

Aligning workloads and performance
metrics by fixed time intervals

110

TimeX(t1)
Y(t1)

X(t2)
Y(t2)

X(t3)
Y(t3)

X(tn)
Y(tn)

…

How to aggregate workload variables and performance
metrics into fixed time intervals (e.g., every minute)?
• Count (for workloads)
• Mean/Min/Max/Median/Sum (for performance metrics)

Exercise: build a performance
model for OpenMRS

§ Given data:
§ Workload counts (extracted from logs) for every 30 seconds
§ Performance metrics (CPU utilization) averaged over every

30 seconds

§ Build a machine-learning based performance model for
OpenMRS
§ Given Python code in a Jupyter notebook
§ Using linear regression or random forest

§ Download code and data:
§ https://drive.google.com/drive/folders/168q_9hAYmf2x6fmLP

qjqlC48UTVBLl2y?usp=sharing

111

https://drive.google.com/drive/folders/168q_9hAYmf2x6fmLPqjqlC48UTVBLl2y?usp=sharing

