
LOG 8371E
Software Quality Engineering

Lecture 05:
Software Performance Engineering

Heng Li, Assistant Professor

Armstrong

Armstrong
Armstrong Foundjem Ph.D. — Winter 2024

Obamacase website crashed on the day of launch

2

(Ultra) Large-Scale Software
Systems

450 million active users
> 50 billion messages every day

4 million users
2600-3000 req/sec on most weekdays

Rapid Growth and
Varying Usage Patterns

0

200

400

600

800

1000

1200

2005 2006 2007 2008 2009 2010 2011 2012

User Growth Over the Years (in millions)

Facebook Twitter LinkedIn WordPress Tumblr Google+ Pinterest

Software system failures are often due to
performance issues rather than functional bugs

5

Loading

Flickr outage impacted
89 million users

(05/24/13)

One hour global outage
lost $7.2 million in revenue

(02/24/09)

Software system failures are often due to
performance issues rather than functional bugs

A page load slowdown of only one
second could cost $1.6 billion

7

Today’s topic in the SQA system

9

Agenda

§ Software Performance Engineering (SPE)
§ Performance testing
§ Profiling

§ Resources:
§ Trevor Warren, Body of Knowledge on Systems Performance

Engineering. https://tangowhisky37.github.io/PracticalPerformanceAnalyst/about/
§ Gregg, Brendan. Systems performance: enterprise and the cloud. Pearson

Education, 2013.
§ Jain, Raj. The art of computer systems performance analysis - techniques for

experimental design, measurement, simulation, and modeling.Wiley
professional computing, 1991.

10

https://tangowhisky37.github.io/PracticalPerformanceAnalyst/about/

11

Software Performance
Engineering (SPE)

Performance Efficiency (ISO 25010)

12

Quality (sub) factor Description

Performance
efficiency

Performance relative to the amount of resources
used under stated conditions

• Time behavior Degree to which the response and processing times
and throughput rates of a product or system, when
performing its functions, meet requirements

• Resource
utilization

Degree to which the amounts and types of resources
used by a product or system when performing its
functions meet requirements

• Capacity Degree to which the maximum limits of a product or
system parameter meet requirements

Software performance

§ Performance measures the efficiency of the software
against the constraints of time and resource allocation.

§ There are several indicators to capture and evaluate
performance.
üResponse Time: The total elapsed time between

submission of a request and receipt of the response.
üProcessing Rate/Throughput: The total completions

per unit time, e.g. Transactions/Sec.
üUtilization: The ratio of busy time to total time (how busy

or free the resources within a given system are).
üOther indicators (e.g., capacity, battery/power consumption)

§ It is possible to consider the performance of an entire
system (including hardware and software) or part of
the system such as a software component. 13

Software Performance
Engineering (SPE)

§ The set of tasks or activities that need to be
performed across the Software Development Life
Cycle (SDLC) to meet the documented Non-
Functional Requirements (Performance, Scalability,
Availability, Reliability, etc.)

14

15

Software Development Life
Cycle

Performance Engineering Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

System Test & User Acceptance
Test

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

Source: https://tangowhisky37.github.io/PracticalPerformanceAnalyst/pages/
spe_fundamentals/performance_engineering_101/

SPE: Objectives

§ Increase revenue by ensuring the system processes all transactions in a
timely manner.

§ Eliminate delayed deployment due to performance issues.

§ Eliminate unnecessary reengineering effort due to performance issues.

§ Avoid additional and unnecessary costs of purchasing equipment.

§ Reduce the increased costs of maintenance due to performance issues
during production or ad hoc performance corrections.

§ Reduce operational overhead to address system problems due to
performance issues.

§ Identify bottlenecks by simulating a prototype.

§ Increase server capacity.

16

17

Software Development Life
Cycle

Performance Engineering Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

System Test & User Acceptance
Test

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

SPE: Requirements Phase

§ Review business requirements and documentation.
§ Understand the business objectives and the platforms used to

deliver them.

§ Review production performance metrics of the current
version if available.

§ Determine non-functional requirements.
§ So that system performance goals can be set and measured against.

§ Identify tools, resources and infrastructure.
§ Early identification allows budget and time allocation for installation

and staff training.
§ Confirm the consistency of the requirements with each

other and the functional requirements.
§ Resolve conflicts between requirements.

18

19

Software Development Life
Cycle

Performance Engineering Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

System Test & User Acceptance
Test

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

SPE: Architecture and Design

§ Evaluate the alternatives.
§ Provide input from a performance perspective to the

architecture being recommended.

§Determine the capacity of the required
infrastructure.
§ By combining the non-functional requirements with the

architecture design, determine the underlying
infrastructure requirements.

§Define performance targets for developers.
§ Performance targets for the development teams across

application components and tiers (used for unit
performance tests).

20

21

Software Development Life
Cycle

Performance Engineering Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

System Test & User Acceptance
Test

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

SPE: Implementation

§Monitor the development and unit performance
testing.

§Develop workload models.
§ Business workload: how users will use the system to

achieve business goals (e.g., Transactions per hour),
including any peak load periods or regular cycles (e.g.,
quarterly).

§ Infrastructure workload: the workload on infrastructure
resources (e.g. CPU, memory, network utilization etc.)

§ Install and configure performance monitoring tools
for the software and its infrastructure.

22

23

Software Development Life
Cycle

Performance Engineering Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

System Test & User Acceptance
Test

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

SPE: Testing

§Create performance tests to simulate the workload
model.

§Use the tests to validate the non-functional
requirements.

§ Identify application bottlenecks.

§ Validate the impact of code and configuration
changes on application performance.
§ Identify performance regressions

24

What is a performance
regression?

Old
version

New
version

Does the new version have
worse performance than
the old version?

25

26

Mozilla takes performance
regression seriously!

27

“We cannot allow performance
regressions to go unnoticed or
unresolved during our development
cycles.”

Mozilla takes performance
regression seriously!

28

Software Development Life
Cycle

Performance Engineering Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

System Test & User Acceptance
Test

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

SPE: Production

§ Perform performance monitoring to continuously
assess software performance, and to identify when
the system is reaching its capacity.

§ Perform capacity management to provide the
required infrastructure capacity to sustain growth
in business workloads.

§ Provide production workload data to support the
development of the next version.

29

Benefits of SPE

§ Defining a clear set of non-functional requirements
ensures successful development.

§ The constant and early focus on system performance
during all phases of development prevents late and
costly changes in the future.

§ Production performance monitoring maintains system
performance and allows capacity to be expanded
before it is exceeded.

§ The proactive approach allows you to avoid problems
and focus on development, not on constant problem
solving.

§ By successfully delivering a functional and performing
system as required, the customer will receive full value.

31

Challenges of SPE

§ By promoting time to market and budget constraints, the
importance of SPE in the software lifecycle is reduced.

§ The main challenge for an inefficient SPE is a knowledge gap
between developers and quality experts.
§ This is also the reason for the difficulty of matching functional

requirements with non-functional requirements (but not impossible).

§ Performance is perceived by users.
§ Developers know the features but they cannot perceive the

performance.
§ Quality experts know performance, but they don't know features.

§ One recommended solution to bridge the gap is automation.
§ Eliminate the need for qualified people for manual construction of

methods and models for performance.
§ Reduce time and effort for performance validation.

32

Performance Testing

42

Performance Testing

§All the tests and methodologies to measure, verify
and validate the performance of the system.

§ It is part of SPE.
§ Its objectives include:

§ Demonstrate system compliance with performance
criteria.

§ Compare two systems to find the most efficient.
§ Measure and identify the components that cause the

system to not perform well.

43

Testing: Types of tests

§ Load testing: Tests the performance of the system under
the expected load.
§ A number of users who perform a specified number of requests

during a given period of time.

§ Stress testing: Tests the limits of the system's capacity.
§ Endurance testing: Tests the system under the expected

load for a long time.
§ Spike testing: Tests the reaction of the system by

suddenly increasing or decreasing the load generated by a
very large number of users

§ Capacity testing: Tests the system to find the maximum
capacity.

§ Configuration testing: Test the effect of various
configuration or configuration changes to the system.

45

Performance Testing

Mimics multiple users repeatedly performing the same tasks
Take hours or even days

Produces GB/TB of data that must be analyzed

Test Design Test Execution Test Analysis

Testing: Errors

§ Performance testing is the last step in development.
§More hardware fixes all performance issues.
§What works now, it will always work.
§One testing scenario is sufficient.
§ Testing every part of the system equals testing the

entire system.
§Developers are too experienced to need testing.
§ Load testing is sufficient.

48

Performance
Test Process

50

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Performance
Test Process

51

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Designing Realistic Loads

Aggregate Workload

Login
10%

Browse
80%

Purchase
5%

Logout
5%

100%

An E-Commerce System

Steady Load, Step-wise load,
Extrapolated load

Use-Case

Login

Browse

Purchase

Logout

Load Derived from UML, Markov and
Stochastic Form-oriented Models

Aggregate Workload (1)

§ Steady Load
§ Ease of measurement
§ Memory leaks?

§ Step-wise Load
§ Same workload mix
§ Different workload intensity

[Bondi, CMG 2007]

[Hayes, CMG 2000]

Derived the testing loads from historic data

Aggregate Workload (2)

§ In case of missing past usage data, testing loads can be
extrapolated from the following sources:

§ Beta-usage data
§ Interviews with domain experts
§ Competitors’ data

[Barber, WSE 2004]

Use-Case (1)
- UML Diagrams

The RUG (Realistic Usage Model)
- derived based on UML use case diagrams

[Wang, ISPA 2004]

Login

Search Purchase

Browse

…

…

0.4

0.6

0.8

0.15

0.05

0.05

0.95

Use-Case (2)
- Markov Chain

Use-Case (2)
- Markov Chain

web access logs for the past few months

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dsbrowse.jsp?browsetype=title&browse_category=&browse_actor=
&browse_title=HOLY%20AUTUMN&limit_num=8&customerid=41
HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646
&quan=3&item=2551&quan=1&item=45&quan=3&item=9700&qua
n=2&item=1566&quan=3&item=4509&quan=3&item=5940&quan=
2 HTTP/1.1" 200 3049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&
quan=1&item=6970&quan=3&item=5237&quan=2&item=650&quan
=1&item=2449&quan=1 HTTP/1.1" 200 2515 113

Web Access Logs

Use-Case (2)
- Markov Chain

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dsbrowse.jsp?browsetype=title&browse_category=&browse_actor=
&browse_title=HOLY%20AUTUMN&limit_num=8&customerid=4
1 HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=64
6&quan=3&item=2551&quan=1&item=45&quan=3&item=9700&qu
an=2&item=1566&quan=3&item=4509&quan=3&item=5940&quan
=2 HTTP/1.1" 200 3049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544
&quan=1&item=6970&quan=3&item=5237&quan=2&item=650&qu
an=1&item=2449&quan=1 HTTP/1.1" 200 2515 113

For customer 41: browse -> purchase

Use-Case (2)
- Markov Chain

Login

Search Purchase

Browse

…

…

0.4

0.6

0.8

0.15

0.05

0.05

0.95

Use-Case (2)
- Markov Chain

Performance
Test Process

78

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Live-user Based Test Execution

• Coordinated live-user testing
• Users are selected based on different

testing criteria (e.g., locations, browser
types, etc.)

C Reflects realistic user behavior
C Obtain real user feedbacks on

acceptable performance and
functional correctness

D Hard to scale (e.g., limited
testing time)

D Limited test complexity due to
manual coordination

Driver-based Test Execution

C Easy to automate
C Scale to large number of requests

D Load driver configurations
D Hard to track some system behavior

(e.g., audio quality or image display)

• Specialized Benchmarking tools (e.g., LoadGen)
• Centralized Load Drivers (e.g, LoadRunner, WebLoad)

o Easy to control load, but hard to scale (limited to a machine’s memory)
• Peer-to-peer Load Drivers (e.g., JMeter, PeerUnit)

o Easy to scale, but hard to control load

Three General Aspects
When Executing a Load Test

Test Setup
• System Deployment
• Test Execution Setup

Load Generation and
Termination
• Static Configuration
• Dynamic Feedback
• Deterministic

Test Monitoring and Data
Collection
• Metrics and Logs

Test Execution Setup

§ Live-user-based executions
§ Tester recruitment, setup and training

§Driver-based executions
§ Programming
§ Store-and-replay configuration
§ Model configurations (e.g., Markov chain for JMeter as an

extension)

§ Emulation-based executions
§ Write your own load driver

Load Generation and Termination

Static
Configuration

Dynamic
Feedback

• Timer-Driven
• Counter-Driven
• Statistic-Driven

• Dynamically steer the
testing loads based on
system feedback

Live-user Based Driver Based
Static ü ü

Dynamic û ü

Load Generation and Termination

Static
Configuration

Dynamic
Feedback

Performance Monitoring

93

Test Monitoring Tools

Task Manager
JConsole

CA Willy

App Dynamics pidstat

Agent-less Monitoring Examples

Task Manager JConsole

PerfMon (Windows), sysstat (Linux), top

Agent-based Monitoring
Examples

App Dynamics CA Willy

Dell FogLight, New Relic

Application Performance
Monitoring (APM)

97

§Commerical Products:
§ AppDynamics, Compuware Dynatrace, …

§Open-Source:
§ Kieker http://kieker-monitoring.net/

http://kieker-monitoring.net/

Kieker Monitoring Framework

98
https://kieker-monitoring.net/live-demo/

Performance
Test Process

105

Designing
Performance Tests

Performance
Test report

Performance
Test Data

Testing Load

Performance
Test Objectives

Executing
Performance Tests

Analyzing
Performance Data

Sample Counters

Sample Execution Logs

Version 1 Version 2

Comparing with prior
version

Comparing with threshold
from requirement

Comparing with thresholds or reference
versions

Comparing Alternatives

§ Comparing one alternative with a threshold
§ Comparing two alternatives

§ Non-corresponding measurements
§ Before-and-after comparisons

§ Comparing proportions
§ Comparing more than two alternatives

§ One-factor analysis of variance (ANOVA)

112

Comparing one sample with a
threshold

113

§ Motivation
§ Is there a statistically significant difference between

the performance of a system and a threshold?

§ Assume there is one set of measurements
(sample) corresponding to the alternative

§ Example: One-sample t-test

One Sample t-test with R

114

> alt1 <- c(3,7,1,9,3,4,1,2,6,7,5,8,5,9,4,6,4,3,9,5)

> thre <- 3

> t.test(alt1, mu=thre)

One Sample t-test

data: alt1

t = 3.604, df = 19, p-value = 0.001891

alternative hypothesis: true mean is not equal to 3

95 percent confidence interval:

3.859453 6.240547

sample estimates:

mean of x

5.05

> hist(alt1)

> abline(v=thre, col="red",lwd=3)

Comparing Two Alternatives

§ Motivation
§ Is there a statistically significant difference between two

systems?
§ Does a change made to a system have a statistically

significant impact on its performance?
§ Assume there are two sets of measurements

(samples) corresponding to the two alternatives
§ Will distinguish between two cases:

§ Non-corresponding measurements (unpaired
observations)
§ The two sets of measurements (samples) are independent

§ Before-and-after comparisons (paired observations)
§ The two sets of measurements (samples) are not independent

115

Non-Corresponding
Measurements

117

Assumptions
§ Measurements form two independent samples

§ Alternative 1: Alternative 2:

§ Measurements within each set are independent and identically
distributed (IID) random variables with variances, resp.

Example: Independent (unpaired) two-sample t-test

Two Sample t-test with R

119

> alt1<-c(3,7,1,9,3,4,1,2,6,7,5,8,5,9,4,6,4,3,9,5)

> alt2<-c(3,1,2,4,5,2,2,5,3,2,3,4,2,3,5,4,3,1,3,2)

> t.test(alt1,alt2)

Welch Two Sample t-test

data: alt1 and alt2

t = 3.3215, df = 27.478, p-value = 0.002539

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.8037895 3.3962105

sample estimates:

mean of x mean of y

5.05 2.95

> par(mfrow=c(1,2))

> hist(alt1)

> hist(alt2)

120

Before-and-After Comparisons

§Assumptions
§ The two sets of measurements (samples) are not independent
§ Measurements can be grouped into corresponding pairs (bi, ai)
§ bi = “before” measurement, ai = “after” measurement
§ The set of differences di = bi – ai are independent and identically

distributed (IID) random variables (sample)

§ Examples scenarios
§ The effect of an optimization applied to a set of systems

Two corresponding measurements per system
§ A set of randomly selected benchmarks run on two systems

Two corresponding measurements per
benchmark

Example: Dependent (paired) two-sample t-test

Paired t-test with R

121

> before <- c(20,18,19,22,17,20,19,16,21,17,23,18)

> after <- c(22,19,17,18,21,23,19,20,22,20,27,24)

> t.test(before, after, paired=TRUE)

Paired t-test

data: before and after

t = -2.2496, df = 11, p-value = 0.04592

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.6270234 -0.0396433

sample estimates:

mean of the differences

-1.833333

> t.test(before, after, paired=TRUE, conf.level = 0.96)

Comparing Proportions

122

2 systemin events# total 2, systemin event theof occurances#
1 systemin events# total 1, systemin event theof occurances#

:occursevent particular a timeoffraction thecompare Want to
systems. in twooccur events several timesofnumber theCounting

22

11

==
==

nX
nX

Example: Two-proportion Z-test

Comparing Proportions with R

123

> total <- c(1300203, 999382)

> events <- c(142892, 84876)

> prop.test(events, total, conf.level=0.90)

2-sample test for equality of proportions with continuity
correction

data: events out of total

X-squared = 3948.2, df = 1, p-value < 2.2e-16

alternative hypothesis: two.sided

90 percent confidence interval:

0.02432700 0.02561555

sample estimates:

prop 1 prop 2

0.10989976 0.08492849

Detecting Known Problems
Using Patterns

§ Patterns in the memory utilizations
§ Memory leak detection

§ Patterns in the logs
§ Error keywords

Looking for known patterns:
Deadlocks and memory leak

Performance data under steady load

[Avritzer et al., 2012]

CPU

Memory

Deadlocks and memory leak:
before and after fix

Before fix After fix

[Avritzer et al., 2012]

129ELK: https://www.elastic.co/what-is/elk-stack

https://www.elastic.co/what-is/elk-stack

Queuing models
(white box)

Statistical / data
mining models

(black box)

Anomaly

141

Profiling

Profiling

§ A form of dynamic program analysis that measures the
complexity of the program in terms of space (memory) or
time, or the frequency and duration of function calls.

§ Its objective is the optimization of the program and
the management of resources.

§ It is a process that helps to understand the behavior of a
program.

§ It also helps evaluate and compare performance of different
architectures.

§ Profiling has two important components: instrumentation
and sampling.

142

Profiling: Instrumentation

§ It is possible to collect data by external tools, but this data is not
detailed enough and of a sufficient level of granularity.

§ For this reason, instrumentation is used.
§ A technique that adds code (probes) in the monitored program to

collect performance data.

§ It is possible to add probes at several levels of the system.
§ Source code (manually or automatically)
§ Assisted by the compiler
§ Binary code

§ Motivation for profiling:
§ Collect exactly the data needed and infer the locality of the data.
§ Control the granularity of data.
§ Control the measurement process by activating and deactivating

probes.

143

Profiling: Instrumentation Design

§ Identify the events to be measured.
§ The events that are important for each scenario, including the

start and end of key functions.
§ Choose the level of granularity.

§ One could capture all the events but at a too high cost.
§ One could activate probes selectively at some points in the

code and some components of the software.
§ One could activate some probes and then calculate the

means, variances and distributions.
§ Dynamically select the data to be saved.

§ Record data at runtime.
§ Use instrumentation parameters to vary metrics and their

granularity.

145

Profiling: The pitfalls of
instrumentation

§ Instrumentation adds instructions at the start and end of an
operation to count the operation execution time.
§ These instructions add overhead.
§ One could calculate the overhead and subtracts it from the runtime

to make the measurement more precise.

§ If the operation is too short, the overhead becomes
considerable and the profiler cannot accurately compare the
times between short operations and slow operations.
§ Then we can have a false positive: the profiler can identify a

bottleneck that does not exist.

§ Because instrumentation is an intrusive process, it is
possible to identify "heisenbugs".
§ Bugs whose presence depends on the measurement process.
§ A phenomenon known as the "observer effect".

146

Profiling: Sampling

§ Sampling does not affect the execution of the program.
§ No instruction is inserted in the source elbow nor in the compiled

code.

§ The operating system suspends the CPU at regular intervals
and the profiler records the instruction that is currently
executing.

§ The profiler correlates the instruction with the
corresponding point in the code.

§ The profiler returns the frequency of execution of code
points.

§ Repeat profiling with sampling several times to obtain
statistical significance.

147

Profiling : Sampling vs
Instrumentation

§ Sampling is less precise but much more efficient than instrumentation.
§ Sampling is based on approximations, so it requires several runs of profiling to

converge its results.
§ Sampling is an external process of the application so it does not prevent

software performance and it does not add any overhead (not exactly, why?).

§ Sampling just captures a snapshot of the CPU, so it loses information.
§ We know which instruction is executing, but we do not know who called the

instruction.

§ If the profiled operation is too short (shorter than the sampling
interval), the sampling will not capture it.

§ If the operation or the profiled system is slow enough, instrumentation
may be preferred.

§ Because the added overhead is insignificant compared to the execution time of
operations.

148

Profiling: Automated Profiling

§ Automated profiling facilitates optimization and guarantees
continuous integration and continuous quality assurance.

§ It also reduces optimization costs.

§ Profiling tools are able to calculate a large number of
measurements and produce detailed reports.

§ Warning! Some profiling methods are characterized as
intrusive, which can affect the results of the process.

149

JProfiler’s CPU Profiling

150

Profiling à
Performance testing
§ We can use profiling to

understand the behavior of
our program ...

§ ... and identify the use of
resources (CPU, memory
etc.)

§ After that, we can define the
thresholds and objectives for
the performance and test
them.

§ We can also train or provide
inputs for our performance
models.

Performance testing à
Profiling
§ Testing will indicate the

presence of performance
issues.

§ According to this indication,
profiling will reveal the exact
point of the bottleneck.

§ After, we optimize the code
and rerun the tests.

151

Profiling vs Performance testing:
when to use them in a project?

Exercise 1: Use JMeter to perform
performance testing

§ Follow the tutorial to load-test a demo website
(https://blazedemo.com) using JMeter:
§ Tutorial: https://www.blazemeter.com/blog/getting-started-jmeter-basic-

tutorial

§ JMeter: https://jmeter.apache.org

§ You may also consider other systems:
§ Some examples: https://www.quora.com/Which-sample-website-I-can-

use-to-test-using-JMeter

152

https://blazedemo.com/
https://www.blazemeter.com/blog/getting-started-jmeter-basic-tutorial
https://jmeter.apache.org/
https://www.quora.com/Which-sample-website-I-can-use-to-test-using-JMeter

Exercise 2: Sampling and
instrumentation using JProfiler
§ Use the instrumentation and sampling methods to profile an

application (e.g., your IDE) running on your local machine.

§ Tutorial: https://youtu.be/XMUNKBxdQYk

153

https://youtu.be/XMUNKBxdQYk

Exercise 3: Design realistic loads
for performance testing
§ Based on the following sample logs, design a use-

case model using the Markov chain

154

TP2 - Performance Efficiency

§Performance/load testing
§Performance Profiling
§Due on November 3rd

155

