LOG 837IE
Software Quality Engineering

Lecture 05:

Software Performance Engineering

Armstrong Foundjem Ph.D. — Winter 2024

Armstrong

Armstrong
Armstrong Foundjem Ph.D. — Winter 2024

Obamacase website crashed on the day of launch

The Failed Launch Of www.HealthCare.gov

By ABC123 Next:

Alumni ImaginBank and its war against
fintech

MODIFIED NOV 18, 2016

HealthCare.gov Learn Get Insurance Log in Espariol |

Individuals & Families Small Businesses All Topics v SEARCH

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

The US Government's failed launch of the Healthcare.gov website highlights issues with integrating technology into a large
bureaucratic organization.

“I’'m going to try and download every movie ever made, and you’re going to try to sign up for Obamacare, and we’ll see which happens
first” — Jon Stewart challenging Kathleen Sebelius (former Secretary of Health and Human Services) to a race.

(Ultra) Large-Scale Software
Systems

\
\\;
=l stackoverflow ,__,wmm'hg;rwo%r

.OPERRT
4 million users

2600-3000 reqg/sec on most weekdays

SARAY

WhatsApp

450 million active users
> 50 billion messages every day

Rapid Growth and
Varying Usage Patterns

1200 -

User Growth Over the Years (in millions)
1000 -

800

600 -

400 -

200 -

]
T

0 W

2005 2006 2007 2008 2009 2010 2011 2012

—&—Facebook —M—Twitter —A—Linkedln —>—=WordPress -—%—=Tumblr —@—Google+ -—+—Pinterest

Software system failures are often due to
performance issues rather than functional bugs

Software system failures are often due to
performance issues rather than functional bugs

IPayPal|

VERIFIED

=
flickr
One hour global outage

lost $7.2 million in revenue icg Oq;ilge impacted
(02/24/09) million users

(05/24/13)

Today’s topic in the SQA system

Pre-project SQA
components
Project Life Cycle SQA components

7 N\

Pre-project SQA
<~ components

audits

Reviews,
Monitoring

Static analysis
Maintenance

Standards

(Quality management
standards, project process
standards)

Agenda

" Software Performance Engineering (SPE)
" Performance testing
" Profiling

= Resources:

* Trevor Warren, Body of Knowledge on Systems Performance
Engineering. https://tangowhisky37.github.io/PracticalPerformanceAnalyst/about/

" Gregg, Brendan. Systems performance: enterprise and the cloud. Pearson
Education, 2013.

= Jain, Raj. The art of computer systems performance analysis - techniques for

experimental design, measurement, simulation, and modeling.Wiley
professional computing, 1991.

10

https://tangowhisky37.github.io/PracticalPerformanceAnalyst/about/

Software Performance
Engineering (SPE)

11

Performance Efficiency (ISO 25010)

Qualty (sub) actr

Performance Performance relative to the amount of resources

efficiency used under stated conditions

* Time behavior Degree to which the response and processing times
and throughput rates of a product or system, when
performing its functions, meet requirements

* Resource Degree to which the amounts and types of resources
utilization used by a product or system when performing its
functions meet requirements

e Capacity Degree to which the maximum limits of a product or
system parameter meet requirements

12

Software performance

" Performance measures the efficiency of the software
against the constraints of time and resource allocation.

" There are several indicators to capture and evaluate
performance.

v'Response Time: The total elapsed time between
submission of a request and receipt of the response.

v'Processing Rate/Throughput: The total completions
per unit time, e.g. Transactions/Sec.

v'Utilization: The ratio of busy time to total time (how busy
or free the resources within a given system are).

v'Other indicators (e.g., capacity, battery/power consumption)

" |t is possible to consider the performance of an entire
system (including hardware and software) or part of
the system such as a software component. 13

Software Performance
Engineering (SPE)

" The set of tasks or activities that need to be
performed across the Software Development Life
Cycle (SDLC) to meet the documented Non-
Functional Requirements (Performance, Scalability,
Availability, Reliability, etc.)

14

Software Development Life
Cycle

Functional Requirements
Gathering

Architecture & Design

Implementation

\ 4

System Test & User Acceptance

Test

A 4

Deploy Into Production

Non-functional Requirements
Gathering

Design for High Performance

Unit Performance Test & Code
Optimization

Performance Test

Monitoring & Capacity
Management

Source: https://tangowhisky37.github.io/PracticalPerformanceAnalyst/pages/
spe_fundamentals/performance_engineering_101/

15

SPE: Objectives

" Increase revenue by ensuring the system processes all transactions in a
timely manner.

* Eliminate delayed deployment due to performance issues.
= Eliminate unnecessary reengineering effort due to performance issues.
" Avoid additional and unnecessary costs of purchasing equipment.

= Reduce the increased costs of maintenance due to performance issues
during production or ad hoc performance corrections.

* Reduce operational overhead to address system problems due to
performance issues.

= |dentify bottlenecks by simulating a prototype.

" Increase server capacity.

16

Functional Requirements
Gathering

Software Development Life
Cycle

Non-functional Requirements

Gathering

17

SPE: Requirements Phase

= Review business requirements and documentation.

* Understand the business objectives and the platforms used to
deliver them.

= Review production performance metrics of the current
version If available.

* Determine non-functional requirements.
= So that system performance goals can be set and measured against.

* |dentify tools, resources and infrastructure.

= Early identification allows budget and time allocation for installation
and staff training.

= Confirm the consistency of the requirements with each
other and the functional requirements.

= Resolve conflicts between requirements.

18

Software Development Life
Cycle

Architecture & Design Design for High Performance

19

SPE: Architecture and Design

" Evaluate the alternatives.
* Provide input from a performance perspective to the
architecture being recommended.

" Determine the capacity of the required
infrastructure.

* By combining the non-functional requirements with the
architecture design, determine the underlying
infrastructure requirements.

" Define performance targets for developers.

* Performance targets for the development teams across
application components and tiers (used for unit
performance tests).

20

Software Development Life
Cycle

Implementation

Unit Performance Test & Code
Optimization

21

SPE: Implementation

* Monitor the development and unit performance
testing.

" Develop workload models.

* Business workload: how users will use the system to
achieve business goals (e.g., Transactions per hour),
including any peak load periods or regular cycles (e.g.,
quarterly).

» |[nfrastructure workload: the workload on infrastructure
resources (e.g. CPU, memory, network utilization etc.)

* Install and configure performance monitoring tools
for the software and its infrastructure.

22

Software Development Life
Cycle

System Test & User Acceptance
y Test P Performance Test

23

SPE: Testing

" Create performance tests to simulate the workload
model.

= Use the tests to validate the non-functional
requirements.

* |dentify application bottlenecks.

* Validate the impact of code and configuration
changes on application performance.

* |dentify performance regressions

24

What is a performance
regression?

O

version version

Does the new version have

worse performance than
the old version?

Mozilla.takes performance
regression seriously!

Performance
Regressions Policy

In this document:

e Basic Policy: Patch authors will be notified with a bug of regressions and have 3 days to
respond or get backed out.

e Requirements: Requirements for bugs.

* Acceptable Outcomes: Responses to regressions.

e Other Scenarios: Non standard regressions.

Basic Policy: Bug filed

Performance is a critical goal for Mozilla releases and the commercial products that will be

26

Mozilla.takes performance
regression seriously!

Performance

Regressions Policy

“We cannot allow performance
regressions to go unnoticed or

unresolved during our development
cycles.”

Software Development Life
Cycle

Deploy Into Production Monitoring & Capacity
Management

28

SPE: Production

" Perform performance monitoring to continuously
assess software performance, and to identify when
the system is reaching its capacity.

" Perform capacity management to provide the
required infrastructure capacity to sustain growth
in business workloads.

" Provide production workload data to support the
development of the next version.

29

Benefits of SPE

" Defining a clear set of non-functional requirements
ensures successful development.

* The constant and early focus on system performance
during all phases of development prevents late and
costly changes in the future.

" Production performance monitoring maintains system
Eerformance and allows capacity to be expanded
efore it is exceeded.

" The proactive approach allows you to avoid problems
and focus on development, not on constant problem
solving.

" By successfully delivering a functional and performin

system as required, the customer will receive full value.

31

Challenges of SPE

* By promoting time to market and budget constraints, the
importance of SPE in the software lifecycle is reduced.

* The main challenge for an inefficient SPE is a knowledge gap
between developers and quality experts.

= This is also the reason for the difficulty of matching functional
requirements with non-functional requirements (but not impossible).
" Performance is perceived by users.

* Developers know the features but they cannot perceive the
performance.

= Quality experts know performance, but they don't know features.

* One recommended solution to bridge the gap is automation.

= Eliminate the need for qualified people for manual construction of
methods and models for performance.

= Reduce time and effort for performance validation.

32

Performance Testing

42

Performance Testing

= All the tests and methodologies to measure, verify
and validate the performance of the system.

" |t is part of SPE.

" |ts objectives include:

* Demonstrate system compliance with performance
criteria.

* Compare two systems to find the most efficient.

* Measure and identify the components that cause the
system to not perform well.

43

Testing: Types of tests

* Load testing:Tests the performance of the system under
the expected load.

= A number of users who perform a specified number of requests
during a given period of time.

= Stress testing:Tests the limits of the system's capacity.

* Endurance testing:Tests the system under the expected
load for a long time.

= Spike testing:Tests the reaction of the system by
suddenly increasing or decreasing the load generated by a
very large number of users

= Capacity testing: Tests the system to find the maximum
capacity.

= Configuration testing:Test the effect of various
configuration or configuration changes to the system.

45

Performance Testing

Qiests

Requests Requests Records
—l Network S —l
Requests T
Application
Under Test Ci N Counter
Counter
Load Generator(s)
Test Design Test Execution Test Analysis

Mimics multiple users repeatedly performing the same tasks
Take hours or even days

Produces GB/TB of data that must be analyzed

Testing: Errors

" Performance testing is the last step in development.
* More hardware fixes all performance issues.

* What works now, it will always work.

* One testing scenario is sufficient.

" Testing every part of the system equals testing the
entire system.

" Developers are too experienced to need testing.

" Load testing is sufficient.

48

Performance
Test Process

Performance
Test Objectives

Designing
Performance Tests

Testing L.oad
Executing
Performance Tests

Performance
Test Data

Analyzing
Performance Data

Performance
Test report

50

Performance

Test Objectives

Designing py; g
Performance Tests

Testing Load

Performance S C.\,
Te < t P rocess Performance Tests

Performance
Test Data

Analyzing -(n)-
Performance Data * *

Performance
Test report

Designing Realistic Loads

An E-Commerce System

Aggregate Workload Use-Case

Login
Browse

80%

Browse

Purchase

Purchase
5%

Logout

Steady Load, Step-wise load, Load Derived from UML, Markov and
Extrapolated load Stochastic Form-oriented Models

Aggregate Workload (1)

= Steady Load

» Ease of measurement

- 7
Memory leaks? [Bondi, CMG 2007]

= Step-wise Load
" Same workload mix
» Different workload intensity

[Hayes, CMG 2000]

Derived the testing loads from historic data

Aggregate Workload (2)

" In case of missing past usage data, testing loads can be
extrapolated from the following sources:
" Beta-usage data
" Interviews with domain experts
" Competitors’ data

[Barber, WSE 2004]

Use-Case (1)
- UML Diagrams

- OWNI0adc
% viewFolder—» % downloadFile J

| % viewFolder—» % deleteFile—» % viewFolder ‘
— .

-~ upload
% viewFolder— % uploadFiles—» % viewFolder‘
J.Z2 Upload i

The RUG (Realistic Usage Model)
- derived based on UML use case diagrams

[Wang, ISPA 2004]

Use-Case (2)
- Markov Chain

Use-Case (2)

- Markov Chain

192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.
192.168.0.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:25 -0400]
[22/Apr/2014:00:32:29 -0400]
[22/Apr/2014:00:32:29 -0400]
[22/Apr/2014:00:32:29 -0400]
[22/Apr/2014:00:32:29 -0400]
[22/Apr/2014:00:32:29 -0400]
[22/Apr/2014:00:32:29 -0400]
[22/Apr/2014:00:32:29 -0400]

[22/Apr/2014:00:32:31 -0400]
[22/Apr/2014:00:32:31 -0400]
[22/Apr/2014:00:32:31 -0400]

[22/Apr/2014:00:32:35 -0400]
[22/Apr/2014:00:32:35 -0400]
[22/Apr/2014:00:32:35 -0400]
[22/Apr/2014:00:32:35 -0400]
[22/Apr/2014:00:32:35 -0400]
[22/Apr/2014:00:32:35 -0400]
[22/Apr/2014:00:32:36 -0400]
[22/Apr/2014:00:32:36 -0400]
[22/Apr/2014:00:32:36 -0400]
[22/Apr/2014:00:32:41 -0400]

"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET
"“GET

/dsbrouse. jsp?brousetype=actor&browse_category=&browse_actor=ANTHONY%28
/dsbrouse.jsp?brousetype=category&brouse_category=11&brouse_actor=&brou
/dslogin.jsp?username=useri1&password=password HTTP/1.1" 200 2539 16
/dsbrouse. jsp?brousetype=actor&browse_category=&browse_actor=WILLIAM%28
/dsbrouse.jsp?brousetype=category&brouse_category=15&brouse_actor=&brou
/dsbrouse. jsp?brousetype=actor&browse_category=&browse_actor=HILARY?%2866
/dsbrouse.jsp?brousetype=category&brouse_category=6&brouse_actor=&brous
/dsbrouse.jsp?brousetype=title&brouse_category=&brouse_actor=&brouse_ti
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646&quan=3&ite
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&quan=1&iten
/dslogin.jsp?username=user3614&password=password HTTP/1.1" 200 728 6
/dsbrouse.jsp?brousetype=title&brouse_category=&brouse_actor=&brouse_ti
/dsbrouse. jsp?brousetype=actor&browse_category=&browse_actor=ELLEN%208GA
/dsbrouse.jsp?brousetype=category&brouse_category=9&brouse_actor=&brous
/dsbrouse. jsp?brousetype=actor&browse_category=&browse_actor=ANGELINA%2
/dsbrouse. jsp?brousetype=actor&browse_category=&browse_actor=JULIA%26TA
/dspurchase.jsp?confirmpurchase=yes&customerid=3614&itemn=4717&quan=2&it
/dslogin. jsp?username=user13337&password=password HTTP/1.1" 208 1960 9
/dsbrouse.jsp?brousetype=title&brouse_category=&brouse_actor=&brouse_ti
/dspurchase.jsp?confirmpurchase=yes&customerid=13337&item=322&quan=2&it
/dslogin.jsp?username=user5414&password=password HTTP/1.1" 200 2579 10
/dsbrouse. jsp?brousetype=actor&browse_category=&browse_actor=GRACE%26BR
/dspurchase.jsp?confirmpurchase=yes&customerid=5414&iten=198&quan=3&ite
/dsneucustomer . jsp?firstname=RHUSQS&lastname=EBFMQDBUNH&address1=909823
/dsbrouse.jsp?brousetype=title&brouse_category=&brouse_actor=&brouse_ti
/dspurchase.jsp?confirmpurchase=yes&customerid=20001&itemn=7868&quan=3&i
/dslogin.jsp?username=user13713&password=password HTTP/1.1" 288 729 6
/dsbrouse.jsp?brousetype=category&brouse_category=9&brouse_actor=&brous
/dspurchase.jsp?confirmpurchase=yes&customerid=13713&itemn=493&quan=3&it
/dsloqin.jsp?username=user90811&password=password HTTP/1.1" 2060 728 6

web access logs for the past few months

Use-Case (2)
- Markov Chain

192.168.0.1 - £22/Apr/2014:()0:32:25 -0400] "GET
/dsbrowse.jsp?browsetype=title&browse_category=&browse_actor=
&browse_title=HOLY %20 AUTUMN&limit_ num=8&customerid=41
HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=646
&quan=3&item=2551&quan=1&item=45&quan=3&item=9700&qua
n=2&item=1566&quan=3&item=4509&quan=3&item=5940&quan=
2 HTTP/1.1" 200 3049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET _
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544&
quan=1&item=6970&quan=3&item=523"7 &quan=2&item=650&quan
=1&item=2449&quan=1 HTTP/1.1" 200 2515 113

Web Access Logs

Use-Case (2)
- Markov Chain

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET
/dsbrowse.jsp?browseg/ygeﬁltle&browSjc_qategory=&browse_actor=
&browse_title=HOLY %20 AUTUMN&Ilimit_num=8&customerid=4

1 HTTP/1.1" 200 4073 10

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET _
/dspurchase.jsp?confirmpurchase=yes&customerid=5961&item=64
6&quan=3&item=2551&quan=1&item=45&quan=3&item=9700&qu
an=2&i1tem=1566&quan=3&item=4509&quan=3 &item=5940&quan
=2 HTTP/1.1" 200 3049 177

192.168.0.1 - [22/Apr/2014:00:32:25 -0400] "GET _
/dspurchase.jsp?confirmpurchase=yes&customerid=41&item=4544
&quan=1&item=6970&quan=3&item=523"7 &quan=2&item=650&qu
an=1&item=2449&quan=1 HTTP/1.1" 200 2515 113

For customer 41: browse -> purchase

Use-Case (2)
- Markov Chain

Performance
Test Process

Performance
Test Objectives

Designing »
»

Performance Tests

Testing Load

Executing
Performance Tests

Performance
Test Data

Analyzing -(n)-
Performance Data * *

Performance
Test report

78

Live-user Based Test Execution

Ve

Reflects realistic user behavior
Obtain real user feedbacks on
acceptable performance and
functional correctness

Ve

$® Hard to scale (e.g., limited
testing time)

$ Limited test complexity due to
manual coordination

* Coordinated live-user testing

 Users are selected based on different
testing criteria (e.g., locations, browser
types, etc.)

Olest

Driver-based Test Execution

Easy to automate
Scale to large number of requests

Load driver configurations
Hard to track some system behavior
(e.g., audio quality or image display)

* Specialized Benchmarking tools (e.g., LoadGen)
* Centralized Load Drivers (e.g, LoadRunner, WebLoad)
o Easy to control load, but hard to scale (limited to a machine’s memory)
* Peer-to-peer Load Drivers (e.g., JMeter, PeerUnit) / APACHE

o Easy to scale, but hard to control load JMeter "

Three General Aspects
When Executing a Load Test

Test Setup

e System Deployment
e Test Execution Setup

&
Load Generation and Test Monitoring and Data
Termination Collection
* Static Configuration * Metrics and Logs

* Dynamic Feedback

* Deterministic

Test Execution Setup

= | ive-user-based executions
" Tester recruitment, setup and training

" Driver-based executions
" Programming
" Store-and-replay configuration

" Model configurations (e.g., Markov chain for JMeter as an
extension)

Load Generation and Termination

Static Dynamic
Configuration Feedback

& "%

)

e Timer-Driven * Dynamically steer the

e Counter-Driven testing loads based on
system feedback

e Statistic-Driven

Load Generation

Static
Configuration

anhd Termination

Dynamic
Feedback

Live-user Based

Driver Based

Static

v

v

Dynamic

X

v

Performance Monitoring

Business/service monitoring — _
Business

Processes

Key performance indicators, e.g. process throughput, ...

SLO appliance, workload, ...
Services

Application monitoring — Response times, operational profile, ...

Application

. . Thread/connection pool sizes, ...
Middleware Container / P '

/ Virtual Machine \-Ieap SIZE; o

) CPU/memory utilization, ...
Operating System

/ Hardware Availability, reliability, ...

Infrastructure monitoring

93

Test Monitoring Tools

& Investigator - CA Introscope Workst -18]x]
= Windows Task Manager Workstetion Edt Manager Properties Viewer Help
File Options View Help @ superDomainxphaselebSphereMYAGENT_IDECSAMPLE
anon Java Monitoring & Management Console T
Applications | Processes | ;| Networking Connection Window _Help CIRTRCAC | Live
CPU Usage CPU Usage History (X=X} Triage Map Metric Browser |
[“Overview| Memory Threads Cl. VM Summary _ MBean: p " Y Y) y
—— A e an a0 - &8 *Superbomain f Overview | Resaurces | Traces | Errors | Search | Location Map " Metric Count | SOA Dependency Map |
Time fange: (AT 180 - @ custom et ost (VeI ico uner s ranch: 95
=@ xpoase
Nzap m.mm Usage Threads & & WebSphers
30 (b MYAGENT12345 (*
=@
}‘ i Ut -
H‘mm HH Il)
| H‘ 57 . [vacenT o8
somst | i 207 | Mmoo oo CSAMPLE
I
PF Usage Page File Usage History el “ i ‘J]’ ’ | (ll .
oombl 10 -
12401250 13:00 13:10 13.20 1330 1240 12:50 13.00 13:10 13.20 1330
Used: 10.5Mb _ Committed: 99.2 Mb _Max: 1.9 Gb Uve: 19 Peak: 24 Total: 765
Classes CPU Usage -—/
— 2,000 3.0% *
2:5% |
2.0%
5 Resource [Metric Count [Percent of Total
Totals Physical Memory (K) Lsool Lsx e
—
Handles 15796 Total 523276 - oy 1.0% e Frontends Frontends.
Threads 585 Available 147196 / o = fgocrea I
Processes 52 System Cache 251812 o o \5‘ Bytesin U [Serviets
10004 0.2% I
Commit Charge (K) Kernel Memory (K) 1240 1250 1300 1310 13:20 1330 1240 12550 1300 13.10 1320 1330
Total 340832 Total 46276 Loaded: 1,353 Unloaded: 0 _Total: 1,353 CPU Usage: 0.0%
Lirnit. 1277788 Paged 33824
Peak. 379916 Nonpaged 12452
Processes: 52 CPU Usage: 100% Commit Charge: 332M | 1247M

onsole
Task Manager

APPLICATION DASMDOAR 0 ,

e

Agent-less Monitoring Examples

£ Windows Task Manager
File Options View Help

Applications | Processes

Totals

Handles 15796
Threads 585
Processes 52

Commit Charge (K)

Total 340832
Limit: 1277788
Peak 379916

CPU Usage CPU Usage History

PF Usage Page File Usage History

Physical Memory (K)

Total 523276
Available 147196
System Cache 251812
Kernel Memory (K)

Total 46276
Paged 33824
Monpaged 12452

lProcesses: 52

CPU Usage: 100%

Commit Charge: 332M [1247M

12:40 12:50 13:00 13:10 13:20 13:30
Used: 10.5 Mb Committed: 99.2 Mb Max: 1.9 Cb

Classes CPU Usage
2,000 3.0%
2.5%
2.0%
1,500 L3%
- o gt Lox
(
0.5%
1,000 0.2%

12:40 12:50 13:00 13:10 13:20 13:30
Loaded: 1,353 Unloaded: 0 Total: 1,353

ANO Java & Console
Connection Window Help
Ro® —
[-Overview | Memory Threads Classes VM Summary MBeans
Time Range: | All 2]
Heap Memory Usage Threads
20 Mb J = 30
15 Mb ” |.‘J‘ 25
I l‘ l j ' ‘ f ' |I‘ Vites 1
10 Mb J ‘l 20+ | { Mg oy oo |, e
([‘
5.0 Mb ‘ ‘ 15
0.0 Mb 10

12:40 12:50 13:00 13:10 13:20 13:30
Live: 19 Peak: 24 Total: 765

CPU Usage
« 0.0%

12:40 12:50 13:00 13:10 13:20 13:30
CPU Usage: 0.0%

Task Manager

JConsole

PerfMon (Windows), sysstat (Linux), top

Agent-based Monitoring
Examples

Apgl cann

o

APPLICATION DASMBOARD

B Investigator - CA Introscope Workstation [Admin@xpbase:5001]

‘Workstation Edit Manager Properties Viewer

Help

=l8(x|

é) SuperDomain|xpbasefebSphereMY AGENT_JOBCSAMPLE

®(e[/o]]

|] [l 1»] o]

ution:(1 5

seconds 7] & 5

Triage Map ~ Metric Browser “.‘

=& *SuperDomain®
@ custom Metric Host (virtual

) »

: Overview V"‘I Resources V‘\ Traces | Errors | Search | Location Map ~ Metric Count ““. SOA Dependency Map V"‘.
Metrics under this branch: 95

o . = a xphase
(= 4% WebSphere
P

Request Samnan, .

‘
EM Port
Java Version
k Launch Time
ansacions Violeng Servce . [processp
v e [virtual Machine]
=) Agert Stats
(& Build and R
=53 Resaurces|
atek Velitng math Dok e , (& % cru

2 (& Utiiization o

Agent smsi

=-EQ Processor

Resource

Metric Count +

Percent of Total

[utiizati

M
Frontends
NIO
Serviets

- B Frontends
= B3 6C Heap
Bytes In Us

Jan 2, 2014 1:23:12 AM IST

App Dynamics

Dell FogLight, New Relic

CA Willy

Application Performance
Monitoring (APM)

" Commerical Products:

* AppDynamics, Compuware Dynatrace, ...

* Open-Source:
= Kieker http://kieker-monitoring.net/

T-’,ﬁ@k@[f

http: //kieker.

97

http://kieker-monitoring.net/

Kieker Monitoring Framework

Analysis Configuration (via APl and WebGUI)

m G 1

Monitoring Records t ==

s - . | i : r—— - | O
' P rpe— Pipes and Filters

Measurement

Mnhitoring Iogfstréam

N B -
X ST B TR T BT T Fa— TR Ty ™ i
 aip armi - e
L . Exp u-r"v'i1

Bankstine java
< " Copyrl 2813 Kleker Profject (hitp://kli
Yode Conbent
package kieker.axamples.usergulde. chibookst < DT PE aspect] PLUALIC =~ At pect K TITONER
- Vol Sy Dalien
N aspmct - i
import kisker manktaring. ancatat fan, Operat i e
. ailic E:.__ M .I“Iﬂ“-‘ "'A'-\,\-"'\pl
public class Bookstare | a Iy
« ingluda L A
" tal ! 1 — e 1 I F
private final Catalog catalog = mew Cati o] —
. i B Cr - R this . cal ——
private fisal ¢ i = maw CRA[This.ca aspect ——p, _,Jj f,f-‘_‘ ../ /‘P ", 2 e el
name kiekEr FOnROnNnG. probe aspect aper r - : i i
B arat | onErsaut] onMonitar i el re i [
I : -® aspect
public wodd searchBook{) { i § |
name kiekermonnonng. probeaspect.oper
this,catalog, getiock]false); : fing.pr Rech.op
this. cra. getiFFars() “aspect
nama kisker mannonng.probe aspect] oper

1

: Monitoring Probe ks morioring probe aspeci o

Tesign Sour
Design Source J

Software System with Monitoring Instrumentation Online and Offline Visualization

https://kieker-monitoring.net/live-demo/

98

Performance
Test Process

Performance
Test Objectives

Designing
Performance Tests

Testing Load
Executing
Performance Tests

Performance
Test Data

Performance
Test report

Analyzing -(n)-
Performance Data * *

105

Sample Counters

A B C D E
1 Time Disk Reads/sec Disk Writes/sec Page Faults/sec Memaory
2 | 2/29/06 16:56 0.049986394 0.000723659 0.003576542 3534548
3 | 272908 17:01 0 0 0 3534848
4 | 2/29/06 17:04 0.060612225 0.027551011 0.016530607 3534548
5 | 2/29/08 17:07 0 0 0 3534848
6 | 2/29/0817:10 0 0 0 3534848
7| 2/29/06817:13 0.060733302 0.027606046 0.016563628 3534548
8 | 2/29/0817:16 0 0 0 3534848
9 | 2/29/06817:19 0060727442 0.027603383 0.01656203 3534548
10| 2/25/08 17:22 0 0 0 3534848
11| 2/29/08 17:25 0 0 0 3534848
12| 2/28/08 17:28 0 0 0 3534848
13| 2/29/08 17:31 0 0 0 3534848
14| 2/28/08 17:34 0.121368621 0.055167555 0.038617289 3534848
15| 2/29/08 17:37 0 0 0 3534848
16 | 2/28/08 17:40 0 0 0 3534848
17 | 2/29/08 17:43 0 0 0 3534848
18 | 2/29/08 17:4b 0 0 0 3534848
19| 2/29/08 17:49 0 0 0 3534848
20| 2/29/08 17:52 0 0 0 3534848
21| 2/28/08 17:55 0121392912 0055178596 0.033107158 3534848
22| 2/23/068 17:58 0.060592703 0.027542138 0.02203371 3534848

Sample Execution Logs

= Log Lines

1 time=I1, thread=1. session=I1, receiving new user registration request

2 time=I1, thread=1. session=1, inserting user information to the database

3 time=I1, thread=2. session=2, user=Jack, browse catalog=novels

4 | time=I1, thread=2, session=2, user=Jack, sending search queries to the database

5 time=3, thread=1, session=1, user=Tom, registration completed, sending confirmation email to the user
6 | time=3, thread=2, session=2, database connection error: session timeout

7 time=4, thread=1, session=1, fail to send the confirmation email, number of retry = 1
8 | time=6, thread=2, session=2, user=Jack, successfully retrieved data from the database
9 | time=7, thread=2, system health check

10 | time=8, thread=1. session=1, registration email sent successfully to user=Tom

11 | time=9, thread=2, session=3, user=Tom, browse catalog=travel

12 | time=10, thread=2, session=3, user=Tom, sending search queries to the database

13 | time=10, thread=3, session=4, user=Jim, updating user profile

14 | time=11, thread=3, session=4, user=Jim, database error: deadlock

Comparing with thresholds or reference
versions

g ?&qu\r&m&n’fi

2’ Version 1 Version 2

Comparing with threshold Comparing with prior
from requirement version

Comparing Alternatives

* Comparing one alternative with a threshold
* Comparing two alternatives

* Non-corresponding measurements
= Before-and-after comparisons

* Comparing proportions

2@

112

Comparing one sample with a
threshold

= Motivation

* |s there a statistically significant difference between
the performance of a system and a threshold?

= Assume there is one set of measurements
(sample) corresponding to the alternative

» Example: One-sample t-test

113

One Sample t-test with R

> altl <- ¢(3,7,1,9,3,4,1,2,6,7,5,8,5,9,4,6,4,3,9,5)
> thre <- 3
> t.test(altl, mu=thre)

One Sample t-test

data: altl
t = 3.604, df = 19, p-value = 0.001891
alternative hypothesis: true mean is not equal to 3
95 percent confidence interval:
3.859453 6.240547 Histogram of alt1

sample estimates:

25
|

mean of x
5.05

2.0
|

Frequency
1.5

> hist(altl)

> abline(v=thre, col="red",lwd=3)

1.0

0.5

0.0

2 ‘ ’ ’ 114

alt1

Comparing Two Alternatives

= Motivation

» |s there a statistically significant difference between two
systems?

= Does a change made to a ﬁystem have a statistically
significant impact on its performance?

= Assume there are two sets of measurements
(samples) corresponding to the two alternatives

= Will distinguish between two cases:

= Non-corresponding measurements (unpaired
observations)

» The two sets of measurements (samples) are independent
= Before-and-after comparisons (paired observations)
» The two sets of measurements (samples) are not independent

115

Non-Corresponding
Measurements

Assumptions
» Measurements form two independent samples
= Alternative 1: Alternative 2:

= Measurements within each set are independent and identically
distributed (1ID) random variables with variances, resp.

Example: Independent (unpaired) two-sample f-test

117

Two Sample t-test with R

> alti<-c¢(3,7,1,9,3,4,1,2,6,7,5,8,5,9,4,6,4,3,9,5)
> a1t2<-c(3,1,2,4,5,2,2,5,3,2,3,4,2,3,5,4,3,1,3,2)
> t.test(altl,alt2)

Welch Two Sample t-test

data: altl and alt2
t = 3.3215, df = 27.478, p-value = 0.002539
alternative hypothesis: true difference in means 1is not equal to 0
95 percent confidence interval:

0.8037895 3.3962105
sample estimates:
mean of x mean of y

5.05 2.95

> par(mfrow=c(1,2))
> hist(altl)
> hist(alt2)
119

Before-and-After Comparisons

= Assumptions
* The two sets of measurements (samples) are not independent
" Measurements can be grouped into corresponding pairs (b, a;)
" b, =“before” measurement, a, = “after’” measurement

" The set of differences d. = b, — a, are independent and identically
distributed (IID) random variables (sample)

" Examples scenarios
* The effect of an optimization applied to a set of systems
Two corresponding measurements per system
= A set of randomly selected benchmarks run on two systems

Two corresponding measurements per
benchmark

Example: Dependent (paired) two-sample t-test 120

Paired t-test with R

> before <- c¢(20,18,19,22,17,20,19,16,21,17,23,18)
> after <- c¢(22,19,17,18,21,23,19,20,22,20,27,24)
> t.test(before, after, paired=TRUE)

Paired t-test
data: before and after
t = -2.2496, df = 11, p-value = 0.04592
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.6270234 -0.0396433
sample estimates:

mean of the differences
-1.833333

> t.test(before, after, paired=TRUE, conf.level = 0.96)

121

Comparing Proportions

Counting the number of times several events occur in two systems.
Want to compare the fraction of time a particular event occurs :
X, =#occurances of the event insystem1, n, =total #events in system I

X, =#occurances of the event in system 2, n, = total #events in system 2

Example: Two-proportion Z-test

122

Comparing Proportions with R

> total <- ¢ (1300203, 999382)
> events <- ¢ (142892, 84876)
> prop.test(events, total, conf.level=0.90)

2-sample test for equality of proportions with continuity
correction

data: events out of total
X-squared = 3948.2, df = 1, p-value < 2.2e-16
alternative hypothesis: two.sided
90 percent confidence interval:

0.02432700 0.02561555
sample estimates:

prop 1 prop 2
0.10989976 0.08492849

123

Detecting Known Problems
Using Patterns

®* Patterns in the memory utilizations
= Memory leak detection

" Patterns in the logs
" Error keywords

Looking for known patterns:
Deadlocks and memory leak

CPU

Performance data under steady load

[Avritzer et al., 2012]

Deadlocks and memory leak:
before and after fix

&3 System Information

¥
E

CPU Usage Metory CPU Usage CPU Usage Hstory

y Commit

0 Byen bombony

O Usage

Leery c

Comei History

et o,

1/0 Bytes History

ax: Py Momony [Pagrg Torsk Physcal Memory (K) Pagng

e 0814 Tow 2,086,960 Page Faul Deka 1572 Handes 200 Total 2085440 Page Fauk Deka 1515
Trosach 1012 Avadain o Page fasd Dets 0 Theeads 1,081 Avalatie 688654 Page Read Deta 13
Pnintoss M SymemCache 169% Pagrgfie\wseDels 1R Processes 45 SyiemCache 873152 Pagng File Wite Dea 0
merd Charge X [or— Magped Fle Wilke Deka 0 Comemit Chasge (K) Kemel Memory (K) Magped Fie Wite Dela 0
Cument 2m208 Paged Prysce 2 PU and WX Cument 3003108 Paged Physical 100,020 CPU and 110

Lt ARSI Paged Vit ME2 CortedSeachDels 80 Lmt 4024858 PagedVitusl 100858 Cotet SwichDeta 15838
Few 2012680 Pagedlidt mommbok 10 FleadDela 0 Peak IM2EE PogedLimt rosymbols 1/0 ReadDeka 7
Pea/Lit BT Norgeged s V0D 1 Pesk/Lint 75605 Norpaged 2064 0WieDea 2
ComertLmd BIEY NorcegsdLit nowmbok 0 OheDete = Cusenit/Lind 47X Norpsgedlik nommbols /O OtherDeka 33%

Show ane gagh e CFU

Before fix

[C] Show one gragh pee CPU

After fix

[Avritzer et al., 2012]

Tracking keywords in logs

~al Kibana Demo 5 minutes ago to a few seconds ago ¥ 54

Out | @ (496635) count per 10s | (496635 hits)

I|ml|Nl""""""thlm""||I||||||I|||||I||||I|I||III|||||II|||.|.........

19:40:00 19:41:00 19:42:00 19:43:00 19:44:00 19:45:00 19:46:00 19:47:00 19:48:00 19:49:00 19:50:00 19:51:00 19:52:00 19:52:00 19:54:00

ALL EVENTS 0 @4 & $ x

Fields @
0 to 100 of 500 available for paging

@timestamp v » 1« message
2016-04-26T19:53:35.032+02:00 Finished: SUCCESS

2016-04-26T19:53:34.234+02:00 [SCP] Copying console log.

ELK: https://www.elastic.co/what-is/elk-stack

https://www.elastic.co/what-is/elk-stack

Building performance models

' 7’
z 0/0/:
5 /,(g —> [cPU [Disk
@

Statistical / data Queuing models
mining models (white box)
(black box]

Profiling

Profiling

= A form of dynamic program analysis that measures the
complexity of the program in terms of space (memory) or
time, or the frequency and duration of function calls.

" |ts objective is the optimization of the program and
the management of resources.

" |t is a process that helps to understand the behavior of a
program.

" |t also helps evaluate and compare performance of different
architectures.

* Profiling has two important components: instrumentation
and sampling.

142

Profiling: Instrumentation

" |t is possible to collect data by external tools, but this data is not
detailed enough and of a sufficient level of granularity.

" For this reason, instrumentation is used.
= A technique that adds code (probes) in the monitored program to
collect performance data.
" |t is possible to add probes at several levels of the system.
" Source code (manually or automatically) gth;
" Assisted by the compiler
" Binary code

" Motivation for profiling: :
= Collect exactly the data needed and infer the locality of the data.
= Control the granularity of data.

. Cor;)trol the measurement process by activating and deactivating
probes.

143

Profiling: Instrumentation Design

" |dentify the events to be measured.

* The events that are important for each scenario, including the
start and end of key functions.

" Choose the level of granularity.
" One could capture all the events but at a too high cost.

" One could activate probes selectively at some points in the
code and some components of the software.

" One could. activate some probes and then calculate the
means, variances and distributions.

* Dynamically select the data to be saved.

= Record data at runtime.

» Use instrumentation parameters to vary metrics and their
granularity.

145

Profiling: The pitfalls of
Instrumentation

= Instrumentation adds instructions at the start and end of an
operation to count the operation execution time.
= These instructions add overhead.

= One could calculate the overhead and subtracts it from the runtime
to make the measurement more precise.

" If the operation is too short, the overhead becomes
considerable and the profiler cannot accurately compare the
times between short operations and slow operations.

* Then we can have a false positive: the profiler can identify a
bottleneck that does not exist.

" Because instrumentation is an intrusive process, it is
possible to identify "heisenbugs”.

" Bugs whose presence depends on the measurement process.
= A phenomenon known as the "observer effect".

146

Profiling: Sampling

* Sampling does not affect the execution of the program.
- Nodinstruction is inserted in the source elbow nor in the compiled
code.

" The operatirpﬁ system suspends the CPU at regular intervals
and the profiler records the instruction that is currently
executing.

* The profiler correlates the instruction with the
corresponding point in the code.

* The profiler returns the frequency of execution of code
points.

= Repeat profiling with sampling several times to obtain
statistical significance.

save save save save save

Thread

read read read read read

147

Time

Profiling : Sampling vs
Instrumentation

Sampling is less precise but much more efficient than instrumentation.

= Sampling is based on approximations, so it requires several runs of profiling to
converge its results.

= Sampling is an external process of the application so it does not prevent
software performance and it does not add any overhead (not exactly, why?).

Sampling just captures a snapshot of the CPU, so it loses information.

" We know which instruction is executing, but we do not know who called the
instruction.

If the profiled operation is too short (shorter than the sampling
interval), the sampling will not capture it.

If the operation or the profiled system is slow enough, instrumentation
may be preferred.

* Because the added overhead is insignificant compared to the execution time of
operations.

148

Profiling: Automated Profiling

* Automated profiling facilitates optimization and guarantees
continuous integration and continuous quality assurance.

" |t also reduces optimization costs.

* Profiling tools are able to calculate a large number of
measurements and produce detailed reports.

* Warning! Some profiling methods are characterized as
g P &
intrusive, which can affect the results of the process.

Visualvm &

JProfiler’s CPU Profiling

Thread status: mm All states

Method Total Time v Inv. Avg.Time MedianTime Min. Time Max. Time Std. Dev. Outlier Coeff,
weblogic.work ExecuteThread waitForR...| _ 467s| 1,005 __ 485ms| 5ips| Sius| 14,295ms| 1,200ms| 280,305.16
webloglc lnvocaton ComponentInvocat.. 155s 1, 943 79,850 ps 76 ps 76 ps 26 472 ms 1 140 ms 348 320 13
weblogic.work.ExecuteThread.execute(... 153s 1,138 129 ms 102 ps 102ps 26,472ms 1,456 ms 259,532.71
weblogic.work. SelfTuningWorkManagerl... 153s 1,188 129 ms 93 ps 93pus 26,472ms 1,456 ms 284,648.74
weblogic.work.PartitionUtility.runWorkU. .. 153s 1,138 129 ms 89 ps 83pys 26,472ms 1,456 ms 297,441.93
weblogic.work.LivePartitionUtility.doRun... 153s 1,138 129 ms 87 ps 87pus 26,472ms 1,456 ms 304,279.68
weblogic.invocation.ComponentInvocati... 153s 1,187 129 ms 86 ps 86ps 26,472ms 1,457 ms 307,817.80
weblogic.work.SelfTuningWorkManagerl... 151s 704 215ms 32ps 32ps 26,472ms 1,887 ms 827,259.00
weblogic. timers.internal. TimerThread.ac... 147s 1,083 136 ms 1ps 1ps 4,218 ms 243ms 4,218,763.00 ,,
Q.- Class View Filters v 0

I I 1 1 1 1 1 1 1 I 1 1 1 |
10s
A
1000

100

Call duration: 1.46s £0.20 s
10

Invocation count: 20

Invocation count

[N TR TN N N TN TN TN TN NN N TN TN TN NN N N BN

Call duration ,@ ,@ 5:)

Profiling vs Performance testing:
when to use them in a project?

Profiling -
Performance testing

" We can use profiling to
understand the behavior of
our program ...

= ...and identicl“y the use of
resources (CPU, memory
etc.)

= After that, we can define the
thresholds and objectives for
the performance and test
them.

" We can also train or provide
inputs for our performance
models.

Performance testing 2>
Profiling

" Testing will indicate the
presence of performance
Issues.

" According to this indication,
profiling will reveal the exact
point of the bottleneck.

= After, we optimize the code
and rerun the tests.

151

Exercise |: Use JMeter to perform
performance testing

" Follow the tutorial to load-test a demo website
(https://blazedemo.com) using |Meter:

" Tutorial: https://www.blazemeter.com/blog/getting-started-jmeter-basic-
tutorial

" JMeter: https://jmeter.apache.org

* You may also consider other systems:

= Some examples: https://www.quora.com/Which-sample-website-l-can-
use-to-test-using-]Meter

152

https://blazedemo.com/
https://www.blazemeter.com/blog/getting-started-jmeter-basic-tutorial
https://jmeter.apache.org/
https://www.quora.com/Which-sample-website-I-can-use-to-test-using-JMeter

Exercise 2: Sampling and
instrumentation using JProfiler

= Use the instrumentation and sampling methods to profile an
application (e.g., your IDE) running on your local machine.

" Tutorial: https://youtu.be/ XXMUNKBxdQYk

Defre Feer: Eqcepnons methom | igroered methom
Py define atuch demses sre recarded for O profiieg
) Inchuded pavages o Oassey wn o Hed o wll e wour o
Jeuses we oufied by defnlt
J Unchaded padages o devaes ace not profied o will pot b= o o e (ol bee [f Pe st e g e
ol 0P clasaes wre prufied by Sefadl

A calls from orofied Casses e o i e 2o Seox regardens of e e the called dams % prafied o nol Fadage
Woers rcude of OO0

153

https://youtu.be/XMUNKBxdQYk

Exercise 3: Design realistic loads

for performance testing

" Based on the following sample logs, design a use-

case model using the Markov chain

R Log Lines

1 time=1, thread=1. session=I, receiving new user registration request

2 time=I1, thread=1. session=1, inserting user information to the database

3 time=I1, thread=2. session=2, user=Jack, browse catalog=novels

4 time=1, thread=2, session=2, user=Jack, sending search queries to the database

5 time=3, thread=1. session=1, user=Tom, registration completed, sending confirmation email to the user
6 | time=3, thread=2, session=2, database connection error: session timeout

7 time=4, thread=1, session=I, fail to send the confirmation email, number of retry = 1
8 time=>6, thread=2, session=2, user=Jack, successfully retrieved data from the database
9 | time=7, thread=2, system health check

10 | time=8, thread=1, session=I, registration email sent successfully to user=Tom

11 | time=Y, thread=2, session=3, user=Tom, browse catalog=travel

12 | time=10, thread=2, session=3, user=Tom, sending search queries to the database

13 | time=10, thread=3, session=4, user=Jim, updating user profile

14 | time=11, thread=3, session=4, user=Jim, database error: deadlock

154

TP2 - Performance Efficiency

* Performance/load testing
* Performance Profiling
* Due on November 3rd

155

