
LOG8371 : Ingénierie de la qualité en
logiciel Assurance Qualité en Logiciel

Hiver 2024

Armstrong Foundjem
Chargé de Cours (groupe 01)

Ph.D. Computing
2020-2022

Chair AI/ML/HPC Track,
Since 2018

Postdoc fellow DEEL (Since 2022)

Certifiability of safety-critical systems

3

Notre équipe

Coordonnées et disponibilités

M-4014

Coordonnateur ou coordonnatrice

Programme du cours

6

Les livres de ce cours.

7

Outils

8

Évaluation

?

Les notes des travaux pratiques (devoirs) ne seront pas prises en compte dans la note finale si la
note de l’examen final est inférieure à 40%.

Le quiz et l’examen final se dérouleront en présentiel. Le document autorisé pour les examens est
une feuille manuscrite recto-verso (format A4/lettre).

10

Examen final
- L'examen final portera sur tous les cours du semestre.
- Les notes des travaux pratiques ne seront pas prises en compte dans la note finale si la note de
l'examen final est inférieure à 40%.
- Individuellement
- Théorie et pratique
- Comme les exercices en classe (mais sur papier/Moodle).
- Exemples de systèmes discutés en classe, en laboratoire ou en TP.

Les quiz sont comme l'examen final mais avec moins de questions.

Note importante

11

Tout le matériel présenté pendant les cours ou les séances de laboratoire peut être évalué.

Le matériel sera disponible quelques jours avant.

Des annonces précéderont les mises à jour du matériel et du cours.
du cours.

Les travaux remis en retard seront pénalisés de 10% par jour de retard.

Toute demande de report d'examen doit être faite auprès du bureau des affaires académiques.

La collaboration est autorisée pour les TsP, mais les règles de plagiat s'appliquent en tout temps.

Des questions jusqu'à présent ?

12

https://www.bloomberg.com/news/features/2021-11-16/are-boeing-planes-unsafe-pilots-blamed-for-corporate-errors-in-max-737-crash 13

https://www.bloomberg.com/news/features/2021-11-16/are-boeing-planes-unsafe-pilots-blamed-for-corporate-errors-in-max-737-crash

14

Dans son communiqué, la compagnie affirme que le contact a été perdu
avec l’appareil à 8h44, soit six minutes après son décollage de l’aéroport
international de Bole. Le Boeing s'est écrasé peu après le décollage alors
que le pilote avait évoqué des « difficultés » et demandé à faire demi-tour
en vue d'un atterrissage d'urgence. Selon la compagnie, le pilote éthiopien
était expérimenté et comptait plus de 8 000 heures de vol, et le Boeing
n'avait « aucun problème technique connu ».

https://www.rfi.fr/fr/afrique/20190310-ethiopie-boeing-ethiopian-airlines-s-ecrase-157-personnes-son-bord

https://www.rfi.fr/fr/afrique/20190310-ethiopie-boeing-ethiopian-airlines-s-ecrase-157-personnes-son-bord

https://www.reuters.com/world/us-safety-experts-d
ispute-aspects-ethiopia-737-max-air-crash-finding
s-2022-12-28/ 15

https://www.reuters.com/world/us-safety-experts-dispute-aspects-ethiopia-737-max-air-crash-findings-2022-12-28/
https://www.reuters.com/world/us-safety-experts-dispute-aspects-ethiopia-737-max-air-crash-findings-2022-12-28/
https://www.reuters.com/world/us-safety-experts-dispute-aspects-ethiopia-737-max-air-crash-findings-2022-12-28/

https://www.theguardian.com/business/2021/nov/11/boeing-full-responsibility-737-max-plane-crash-ethiopia-compensation 16

https://www.theguardian.com/business/2021/nov/11/boeing-full-responsibility-737-max-plane-crash-ethiopia-compensation

Final report on Boeing 737 MAX crash sparks
dispute over pilot error

Examining all factors to draw safety lessons

Both the NTSB and France’s Bureau of Enquiry and Analysis agreed with
the Ethiopian agency’s conclusion that the design of Boeing’s new flight
control software that repeatedly pushed the jet’s nose down — the
Maneuvering Characteristics Augmentation System, or MCAS — was a
major cause of the accident.

17
https://www.seattletimes.com/business/boeing-aerospace/final-report-on-boeing-737-max-crash-disputed-age
ncies-note-pilot-error-as-a-factor/

https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/business/boeing-aerospace/final-report-on-boeing-737-max-crash-disputed-agencies-note-pilot-error-as-a-factor/
https://www.seattletimes.com/business/boeing-aerospace/final-report-on-boeing-737-max-crash-disputed-agencies-note-pilot-error-as-a-factor/

18

Après la mort de 157 passagers, dimanche 10 mars 2019, dans le crash d'un Boeing 737 MAX 8
en Ethiopie, les regards se tournent vers l’avionneur américain. Ce crash du vol
Addis-Abeba–Nairobi présente en effet beaucoup de similitudes avec celui de la compagnie
indonésienne Lion Air, qui avait 189 morts en octobre. En cause dans les deux accidents : le
dernier-né de Boeing, son modèle phare. Plusieurs pays, dont la Chine, ont décidé de clouer au
sol leurs propres appareils.

19https://spectrum.ieee.org/how-the-boeing-737-max-disaster-looks-to-a-software-developer

https://spectrum.ieee.org/how-the-boeing-737-max-disaster-looks-to-a-software-developer

20

Error, Fault, Failure

1. #include <iostream>
2. int square(int x) {
3. // Correct usage: Multiply the input by itself to get the square
4. return x + x;
5. }
6. int main() {
7. // Example usage
8. int inputValue = 5;
9. int result = square(inputValue);
10. // Display the result
11. std::cout << "The squared value is: " << result << std::endl;
12. return 0;
13. }

21

Introduction to
Software Quality

Assurance

Corresponding readings

References:
• Introduction to SQA: Book of Galin (04), Chapters 1-4.
• Quality standards: Book of Laporte/April, Chapter 3.
• Quality plan: Book of Galin (04), Chapter 6.

Supplementary resources:
• ISO 25000 standards (Software quality)

Check materials on Moodle.

31

Software bug releases thousands
of US prisoners early

The bug was introduced in
2002 and lasted for 13 years

Caused more than 3,200
prisoners to be released up
to two years early

[Source: BBC News 2015]
32

In 2016, software bugs cost the worldwide
economy $1.1 trillion.

[Source: tricentis.com 2016]

33

What is a software
bug?

34

Exercise: which concept is closest to “bug”

1. Go to www.menti.com
2. Use the code 9180198
3. Choose the concept that is closest to “bug”?

A. Error
B. Fault
C. Failure

https://www.mentimeter.com/s/341b5110f6cab49c705a76b77209dbdf/8b3c063926f3

35

http://www.menti.com/

36

Objectives

§ What is software quality?

§ Why is software quality important?

§ Software quality factors

§ What is software quality assurance?

§ Elements of software quality assurance

Next week preview:
§ Software quality standards
§ Quality plans
§ Software testing

37

Software Quality

38

What is Software and Software
Engineering?

according to the IEEE:

software = computer programs,
procedures, and possibly associated
documentation and data pertaining to
the operation of a computer system

software engineering = (1) the application of a
systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of
software; that is, the application of engineering

to software; (2) the study of approaches as in (1)

39

Failure, fault, and error
§ Failure

§ Observable incorrect behavior of a program. Related to
the behavior of the program rather than its code.

§ Fault (bug)
§ Necessary (not sufficient) condition for the occurrence of

a failure. Related to the code.

§ Error
§ A mistake usually made by people. Cause of a fault.

can lead to can lead to

Error Fault Failure 40

An example of
the failure, fault, error

1. int double (int param) {

2. int result;
3. result = param * param;
4. return result;
5. }

A call to double(3) returns 9
• Result 9 represents a failure
• Such failure is due to the fault at line 3
• The error is a typo (hopefully)

41

Nine Causes of Software Errors

1) Faulty requirements definition (incorrect, missing,
incomplete, unnecessary requirements)

2) Client–developer communication failures

3) Deliberate deviations from software requirements
(improper reuse, omission due to time pressure)

4) Logical design errors (problems with algorithms, sequencing
of actions, boundary conditions, missing states, how to
handle “illegal” input)

42

Nine Causes of Software Errors

5) Coding errors

6) Non-compliance with documentation and coding instructions
(more difficult to deal with team attrition and inspections)

7) Shortcomings of the testing process

8) Procedure errors (workflow and user interface errors)

9) Documentation errors

43

Development Phases vs. Defects

● majority of defects are introduced in earlier phases

● requirements are the top reason for project success or
failure

code
7% other

10%

design
27%

requirements
56%

code
1% other

4%
design
13%requirements

82%

distribution of defects

distribution of effort to fix defects

Source: Martin & Leffinwell
45

Development Phases vs. Cost

relative cost of fixing defects

phase in which found cost ratio
requirements 1
design 3 – 6
coding 10
unit/integration testing 15 – 40
system/acceptance testing 30 – 70
production 40 – 1000

46

What is Software Quality?
according to the IEEE:

software quality = (1) the degree to which a
system, component, or process meets

specified requirements; (2) the degree to which
a system, component, or process meets
customer or user needs or expectations

according to Pressman:

software quality = conformance to explicitly stated functional
and performance requirements, explicitly documented

development standards, and implicit characteristics that are
expected of all professionally developed software

48

Importance of Software Quality

§ Software is a major component of computer systems (about
80% of the cost) used for
§ Communication (e.g., phone system, email system)
§ Health monitoring
§ Transportation (e.g., automobile, aeronautics),
§ Economic exchanges (e.g., e-commerce),
§ Entertainment,
§ etc.

§ Software defects may be extremely costly in terms of
§ Money
§ Reputation
§ Loss of life

49

Importance of Software Quality

§Zune 30 leap year freeze:

§On December 31st 2008,
players began freezing at about
midnight becoming totally
unresponsive and practically
useless

§Official fix:
§ Wait until January 1st 2009

50

Importance of Software Quality

§ Several historic disasters attributed to software:

§ 1988 shooting down of Airbus 320 by the USS Vincennes –
cryptic and misleading output displayed by tracking software

§ 1991 patriot missile failure – inaccurate calculation of time due
to computer arithmetic errors

§ 1992 London Ambulance Service Computer Aided Dispatch
System – blamed for 30-45 deaths

§ Therac-25: radiation therapy and X-ray machine killed several
patients between 1985 and 1987; cause: unanticipated, non-
standard user inputs

53

Importance of Software Quality

§Ariane 5 crash – June 4, 1996:

§ Maiden flight of the European Ariane 5 launcher crashed about
40 seconds after takeoff

§ Loss was about half a billion dollars

§ Explosion was the result of a
software error

§ Uncaught exception due to floating-
point error: conversion from a 64-bit
integer to a 16-bit signed integer
applied to a larger than expected
number

55

Importance of Software Quality

§Ariane 5 crash – June 4, 1996: (cont’d)
§ Runtime error (out of range, overflow) was detected and

computer shut itself down
§ Same for the backup computers
§ This resulted in the total loss of attitude control
§ Ariane 5 turned uncontrollably and aerodynamic forces broke

the vehicle apart
§ Breakup was detected by an on-board monitor which ignited

the explosive charges to destroy the vehicle in the air

§ Ironically, the result of the format conversion was no longer
needed after lift off

56

Importance of Software Quality

§Ariane 5 crash – June 4, 1996: (cont’d)

§ Module was reused without proper testing from
Ariane 4

§ Error was not supposed to happen
with Ariane 4 (it was shown that such
a large input could not occur in the
context of Ariane 4, no exception
handler)

§ Note this was not a complex, computing
problem, but a deficiency of the software
engineering practices in place …

57

Importance of Software Quality

§ The Heartbleed Bug:
§ Serious vulnerability in the popular

OpenSSL cryptographic software library

§ Potentially affected open source web
servers like Apache and nginx with a combined market share
of over 66%; plus email servers, chat servers, and VPNs

§ Out in the wild since March 14, 2012 – fixed April 7, 2014
§ August 2014: personal data of 4.5 million patients of U.S.

hospital group Community Health Systems Inc. stolen by
exploiting the Heartbleed bug

http://heartbleed.com/
60

Importance of Software Quality

§ Pervasive problems:

§ Software is commonly delivered late, way over budget, and of
unsatisfactory quality

§ Software validation and verification are rarely systematic and
are usually not based on sound, well-defined techniques

§ Software development processes are commonly unstable and
uncontrolled

§ Software quality is poorly measured, monitored, and controlled
61

Importance of Software Quality

§NIST (National Institute of Standards and Technology)
study (2002):
§ bugs cost US economy $ 59.5 billion a year—earlier detection

could save $22 billion

§ Tricentis.com (2016):
§ In 2016, software bugs cost the worldwide economy $1.1

trillion.

64

The Software Quality Challenge

§ The uniqueness of the software product:

§ High complexity (and increasingly so) – pervasive in an
increasing number of industries

§ Invisibility of the product

§ Limited opportunities to detect defects compared to other
industries
§ Development, not production (only opportunity to detect defects is

product development; product production planning not required; simple
manufacturing)

65

The Software Quality Challenge

§ The environments in which software is developed:
§ Contracted (features / budget / timetable)
§ Subjection to customer-supplier relationship (potential miscommunications,

change request management)
§ Requirement for teamwork (human-intensive; engineering but also a social

process)
§ Need for cooperation and coordination with other development teams
§ Need for interfaces with other software systems
§ Need to continue carrying out a project while the team changes
§ Need to continue maintaining the system for years

66

Software Quality Factors

§McCall's model
of software quality
factors tree

quality software

product
transition

product
revision

product
operation

cor
rect

nes
s

maint
ainabi

lity
portability

re
lia
bil
ity

efficiency

integrity

usability

§ Reflects the
need for a

comprehensive
definition of

requirements

flexibility

testability
reusabi

lity

inte
rop
era
bili
ty

67

Quality factors – product operation

§Correctness
§ Accuracy and completeness of required output
§ Up-to-dateness and availability of the information

§ Reliability
§ Maximum allowed failure rate

§ Efficiency
§ Hardware resources needed to perform software function

(processing capabilities, data storage, bandwidth, power usage)

68

Quality factors – product operation

§ Integrity
§ Software system security, access rights

§Usability
§ Training required, ability to learn and perform required task

69

Quality factors – product revision

§Maintainability
§ Effort to identify and fix software failures (modularity,

documentation, etc)

§ Flexibility
§ Degree of adaptability (to new customers, tasks, etc)

§ Testability
§ Support for testing (e.g., log files, automatic diagnostics, etc),

traceability

70

Quality factors – product transition

§ Portability
§ Adaptation to other environments (hardware, software)

§ Reusability
§ Use of software components for other projects

§ Interoperability
§ Ability to interface with other components/systems

§ Other factors: robustness, performance, user friendliness,
verifiability, repairability, evolvability, understandability, safety,
manageability

71

Software Quality
Assurance

72

What is Software Quality
Assurance?

software quality assurance = (1) a planned and systematic
pattern of all actions necessary to provide adequate

confidence that an item or product conforms to established
technical requirements; (2) a set of activities designed to

evaluate the process by which the products are developed
or manufactured – contrast with: quality control

according to the IEEE:

quality control: set of activities
designed to evaluate the quality of a
developed or manufactured product
– after development before shipment

quality assurance
aims to minimize

the cost of
guaranteeing quality

73

What is Software Quality
Assurance?

according to D. Galin:

software quality assurance = a systematic, planned set of
actions necessary to provide adequate confidence that the
software development process or the maintenance process

of a software system product conforms to established
functional technical requirements as well as with the

managerial requirements of keeping the schedule and
operating within the budgetary confines

74

Objectives of Software Quality
Assurance (SQA)

1) Assuring an acceptable level of confidence that the software
will conform to functional technical requirements

2) Assuring an acceptable level of confidence that the software
will conform to managerial scheduling and budgetary
requirements

3) Initiation and management of activities for the improvement
and greater efficiency of software development, software
maintenance, and software quality assurance activities

75

Three General Principles of
Software Quality Assurance

§ Know what you are doing

§ Know what you should be doing

§ Know how to measure the difference

76

3 General Principles of SQA

§ Know what you are doing:

§ Understand what is being built, how it is being built and what it
currently does

§ Implies a software development process with
§ Management structure (milestones, scheduling)
§ Reporting policies
§ Tracking

77

3 General Principles of SQA

§ Know what you should be doing:

§ Having explicit requirements and specifications

§ Implies a software development process with
§ Requirements analysis
§ Acceptance tests
§ Frequent user feedback

78

3 General Principles of SQA
§ Know how to measure the difference:

§ Having explicit measures comparing what is being done with what
should be done

§ Four complementary methods:

1) Formal methods – verify mathematically specified properties
2) Testing – explicit input to exercise software and check for

expected output
3) Inspections – human examination of requirements, design,

code, … based on checklists
4) Metrics – measure a known set of properties related to

quality
79

“The Software Quality Shrine”

fo
rm

al
m

et
ho

ds

so
ftw

ar
e

te
st

in
g

so
ftw

ar
e

m
ai

nt
en

an
ce

SQ
A

of
 e

xt
er

na
l

pa
rti

ci
pa

nt
s

in
sp

ec
tio

ns
,

re
vi

ew
s,

 a
ud

its

Organizational Base – Human components – the SQA team

Quality Management
(project progress control,

software quality metrics,
software quality cost)

Standards
(Quality management

standards, project process
standards)

contract review
project development plan
and quality plan

Pre-project SQA
components

Pre-project SQA
components

80

Project Life Cycle SQA components

Quality Infrastructure
components

(procedures, tools, training,
configuration management)

Quality Infrastructure
components

(procedures, tools, training,
configuration management)

“The Software Quality Shrine”

fo
rm

al
m

et
ho

ds

so
ftw

ar
e

te
st

in
g

so
ftw

ar
e

m
ai

nt
en

an
ce

SQ
A

of
 e

xt
er

na
l

pa
rti

ci
pa

nt
s

in
sp

ec
tio

ns
,

re
vi

ew
s,

 a
ud

its

Organizational Base – Human components – the SQA team

Quality Management
(project progress control,

software quality metrics,
software quality cost)

Standards
(Quality management

standards, project process
standards)

contract review
project development plan
and quality plan

Pre-project SQA
components

Pre-project SQA
components

81

Project Life Cycle SQA components

Pre-project SQA components
§ Contract review
§ Development and quality

plans

Quality Infrastructure
components

(procedures, tools, training,
configuration management)

“The Software Quality Shrine”

fo
rm

al
m

et
ho

ds

so
ftw

ar
e

te
st

in
g

so
ftw

ar
e

m
ai

nt
en

an
ce

SQ
A

of
 e

xt
er

na
l

pa
rti

ci
pa

nt
s

in
sp

ec
tio

ns
,

re
vi

ew
s,

 a
ud

its

Organizational Base – Human components – the SQA team

Quality Management
(project progress control,

software quality metrics,
software quality cost)

Standards
(Quality management

standards, project process
standards)

contract review
project development plan
and quality plan

Pre-project SQA
components

Pre-project SQA
components

82

Project Life Cycle SQA components

Development life cycle stage and operation-
maintenance stage:
§ Reviews, inspections, audits
§ Software testing
§ Formal methods
§ Software maintenance
§ SQA of external participants

“The Software Quality Shrine”

fo
rm

al
m

et
ho

ds

so
ftw

ar
e

te
st

in
g

so
ftw

ar
e

m
ai

nt
en

an
ce

SQ
A

of
 e

xt
er

na
l

pa
rti

ci
pa

nt
s

in
sp

ec
tio

ns
,

re
vi

ew
s,

 a
ud

its

Quality Infrastructure
components

(procedures, tools, training,
configuration management)

Organizational Base – Human components – the SQA team

Quality Management
(project progress control,

software quality metrics,
software quality cost)

Standards
(Quality management

standards, project process
standards)

contract review
project development plan
and quality plan

Pre-project SQA
components

Pre-project SQA
components

83

Project Life Cycle SQA components
Infrastructure components for error
prevention and improvement
§ Procedures and work instructions
§ Supporting tools (templates and checklists)
§ Staff training, instruction and certification
§ Preventive and corrective actions (collecting and

analyzing data regarding failures and success)
§ Configuration management (change controls)
§ Documentation control (requirement document, design

document, development/quality plans, etc.)

“The Software Quality Shrine”

fo
rm

al
m

et
ho

ds

so
ftw

ar
e

te
st

in
g

so
ftw

ar
e

m
ai

nt
en

an
ce

SQ
A

of
 e

xt
er

na
l

pa
rti

ci
pa

nt
s

in
sp

ec
tio

ns
,

re
vi

ew
s,

 a
ud

its

Quality Infrastructure
components

(procedures, tools, training,
configuration management)

Organizational Base – Human components – the SQA team

Quality Management
(project progress control,

software quality metrics,
software quality cost)

Standards
(Quality management

standards, project process
standards)

contract review
project development plan
and quality plan

Pre-project SQA
components

Pre-project SQA
components

84

Project Life Cycle SQA components
Managerial SQA components
§ Project progress control (including maintenance contract

control)
§ Software quality metrics
§ Software quality costs

“The Software Quality Shrine”

fo
rm

al
m

et
ho

ds

so
ftw

ar
e

te
st

in
g

so
ftw

ar
e

m
ai

nt
en

an
ce

SQ
A

of
 e

xt
er

na
l

pa
rti

ci
pa

nt
s

in
sp

ec
tio

ns
,

re
vi

ew
s,

 a
ud

its

Quality Infrastructure
components

(procedures, tools, training,
configuration management)

Organizational Base – Human components – the SQA team

Quality Management
(project progress control,

software quality metrics,
software quality cost)

Standards
(Quality management

standards, project process
standards)

contract review
project development plan
and quality plan

Pre-project SQA
components

Pre-project SQA
components

85

Project Life Cycle SQA components

SQA standards
§ Quality management standards (“what” is required for

SQA certification)
§ Project process standards (guidelines for “how”)

“The Software Quality Shrine”

fo
rm

al
m

et
ho

ds

so
ftw

ar
e

te
st

in
g

so
ftw

ar
e

m
ai

nt
en

an
ce

SQ
A

of
 e

xt
er

na
l

pa
rti

ci
pa

nt
s

in
sp

ec
tio

ns
,

re
vi

ew
s,

 a
ud

its

Quality Infrastructure
components

(procedures, tools, training,
configuration management)

Organizational Base – Human components – the SQA team

Quality Management
(project progress control,

software quality metrics,
software quality cost)

Standards
(Quality management

standards, project process
standards)

contract review
project development plan
and quality plan

Pre-project SQA
components

Pre-project SQA
components

86

Project Life Cycle SQA components

Organization for SQA - the human components
§ Management’s role in SQA
§ The SQA unit
§ SQA trustees, committees and forums

Software Quality Assurance

●Verification
●Are we building the

product right?

§ Validation
§ Are we building the right

product?

87

Software Quality Assurance
§ SQA includes V&V:

§ Verification
§ Performed at the end

of a phase to ensure
that requirements
established during the
previous phase have
been met

§ Validation
§ Performed at the end of the development process to ensure

compliance with user expectations

requirements verification

architecture verification

low-level design verification

implementation verification

validation

88

Software Quality Assurance
§ V&V includes static V&V and dynamic V&V

requirements
architecture

low-level design
implementation

prototype

static V&V

dynamic V&V

89

Software Quality Assurance
SQA includes:

§ Defect prevention
§ Prevents defects from occurring in the first place
§ Activities: training, planning, and simulation

§ Defects detection
§ Finds defects in a software artifact
§ Activities: inspections, testing, or measuring

§ Defects removal
§ Isolation, correction, verification of fixes
§ Activities: fault isolation, fault analysis, regression testing

90

Things to do

§ Find teammates (ideally group of 3, maximum 4).

§ Send me the name of your team and the list of your
team members (names, student numbers) by Sep.
16.

§ Signup on our Slack workspace

§Check assignment TP0 (due Nov. 30th)

94

Exercises

95

Closing Thought & Discussion
“Testing by itself does not improve
software quality. Test results are an
indicator of quality, but in and of
themselves, they don't improve it. Trying
to improve software quality by
increasing the amount of testing is like
trying to lose weight by weighing
yourself more often. What you eat before
you step onto the scale determines how
much you will weigh, and the software
development techniques you use
determine how many errors testing will
find. If you want to lose weight, don't buy
a new scale; change your diet. If you
want to improve your software, don't test
more; develop better.”

Steve McConnell, Code Complete
96

Importance of Software Quality
●Zune 30 leap year freeze:

/* days: the number of days since January 1, 1980. */
year = ORIGINYEAR; /* = 1980 */
while (days > 365)
{

if (IsLeapYear(year))
{

if (days > 366)
{

days -= 366;
year += 1;

}
}
else
{

days -= 365;
year += 1;

}
}

source of
the problem?

97

Source of Errors?
Eiffel decides to grant a 5% discount at the beginning of the month to those customers with total
purchases in excess of $1 million in the last 12 months except for those customers that returned
in excess of 10% of their purchases during the last three months.

At the end of each year, Eiffel’s central information processing department:

(1) Collects the previous year’s sales data for each of the customers from all the chain’s stores.
(2) Calculates the cumulative purchases of each customer for the previous year in all the chain’s
stores.
(3) Prepares a list of all customers whose purchases exceed $1 million and distribute it to all
stores.

At the end of each quarter, the individual store’s information processing unit:
(1) Calculates the percentage of goods returned during the last quarter for each customer.
(2) Prepares a list of all customers whose returned goods for the last quarter exceed 10% of that
quarter’s purchase.

At the beginning of the month, the store’s information processing unit:
(1) Processes all monthly purchases for each of the customers.
(2) Calculates the discount according to the last year’s purchase data in all stores, and according
to the store’s records of returns in the last quarter. 98
