Sécurité dans les environnements infonuagiques Module 3: Gestion des Configurations (Part 1)

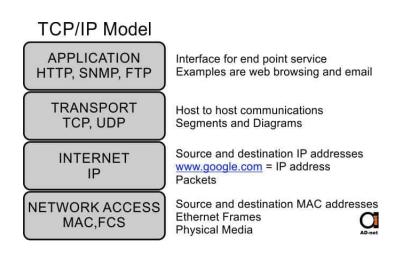
Armstrong Foundjem

Polytechnique Montréal

Automne 2023

1/41

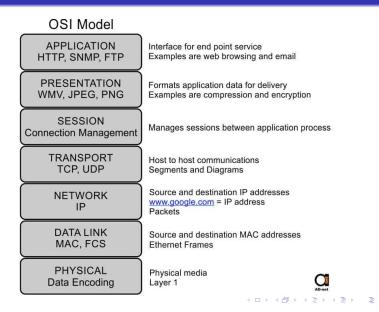
- Network models
- O Network security concepts
- VPC & EC2 security (in Part 2)

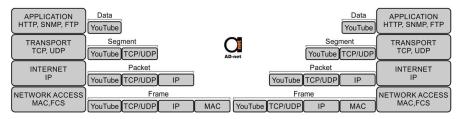


2 Network security concepts

TCP/IP Model

- designed and developed by the US Department of Defense (DoD)
- allows host-to-host communication through network
- has 4 layers: network access, Internet, transport, and application.
- Advantages: More reliable, application layer combines session and presentation layer
- **Disadvantages**: does not provide assurance delivery of packets, protocols cannot be replaced easily


TCP/IP Model


- allows host-to-host communication through network
- has 7 layers: physical, data link, network, transport, session, presentation, and application
- Advantages: provides assurance delivery of packets, protocols can be replaced easily,
- **Disadvantages**: Less reliable than TCP/IP, session and presentation layer are separated

OSI Model

Network Encapsulation

Encapsulation Process

- Encapsulation promotes maintenance
- Code changes are modular i.e. it can be made independently
- Better usability

Network Encapsulation

Network models

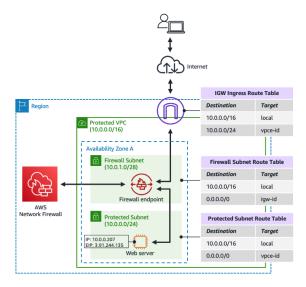
Network security concepts

• What is the 3-way TCP handshake ?

• On Wireshark, open **Statistics** > **Flow Graph**

Capturing from Wi-Fi				- n x	Wiresh	ark - Flow - Wi-Fi	
					-		
		Telephony Wireless Tools	Help		_34,19	3.113.164 31.13.00.21	
📶 📕 🙋 🛞 💷 🖹 🗙	🖸 🍳 🗰 🗯 🖀 🗿 🧕	વ વ વ 🔢			0.309081	31.13.80.8	Comment Tulin1.3) Annhation Data
Apply a display filter < Ctri-					0.310508	Application Data 440	TLSv1.2: Application Data
No. Time	Source	Destination	Protocol	Langth Info	0.322576		1CP1 443 60806 [ACK] Seg+1 Ack+126 Wev+687.
9323., 6839., 372454	172.217.13.206	192,168,0,125	TLSv1.3	226 Application Data	0.322376	943 -+ 69617 [ACX] Seg=1 Ack=30 Win=713 (an=0	TCP1 443 60817 TACKT Seg=1 Ack=20 Win=712
9323. 6039.372454	172.217.13.206	192.168.0.125	TLSv1.3	93 Application Data	0.330380	443	TCP1 443 → 60817 (ACK) 5eg+1 Ack+550 We+532.
9324 6039.372524	192.168.0.125	172.217.13.206	TCP	54 60674 + 443 [ACK] Seq=88	0.330380		127 TCP1 443 → 60803 (ACK) Seg+1 Ack+550 We+552. 127 TCP1 443 → 60803 (ACK) Seg+1 Ack+589 We+532.
9324 6039.372759	172.217.13.206	192.168.0.125	TLSv1.3	588 Application Data			1CP1 443 → 60815 (ACK) 5eg+1 Ack+888 We+532.
9324 6039.373706	172.217.13.206	192.168.0.125	TLSv1.3	241 Application Data	0.331221	44 6000 (ACK) Si Application Data	
9324 6039.373739	192.168.0.125	172.217.13.205	TCP	54 60674 → 443 [ACK] Seq=88	0.339466		TLSv1.2: Application Data
9324. 6039.373811	192.168.0.125	172.217.13.206	TLSv1.3	89 Application Data	0.339466	10	TLS+1.2: Application Data
9324 6039.373862	192.168.0.125	172.217.13.206	TLSv1.3	93 Application Data	0.339466		TCP1 443 → \$4644 [ACK] Seq+1 Ack+162 Wer+260.
9324. 6039.374037	172.217.13.206	192.168.0.125	TLSv1.3	182 Application Data	0.339466		TCP1 443 → 54644 [ACK] Seq=1 Ack=281 We=260.
9324., 6039.391037	172.217.13.206	192.168.0.125	TCP	60 443 → 60674 [ACK] Seq=174	0.339574		TCP1 443 -+ 54544 [ACK] Seq+1 Ack+362 Wer+260.
9324 6039.422138	192.168.0.125	172.217.13.205	TCP	54 60674 → 443 [ACK] Seq=88	0.340465		TLSv1.3: Application Data
9324., 6040.884613	140.82.113.25	192.168.0.125	TLSv1.3	79 Application Data	0.340465	440 -+ 58554 [ADV] Seg=1 Ack+508 Win+130 Lan=0	TCP1 443 -+ 58554 [ACK] Seq+1 Ack+108 Wev+130.
9324., 6040.885071	192.168.0.125	140.82.113.25	TLSv1.3	83 Application Data	0.343136	443 -+ 55554 [ACK] Seg=1 Ack+154 Win+130 Len=0	TCP1 443 → 58554 [ACK] Seq=1 Ack+154 Wer=130.
9324., 6848, 934215	140.82.113.25	192.168.0.125	TCP	54 443 → 60658 [ACK] Seq=374	0.343316	440 -+ 58554 [ADV] Seg=1 Ack+957 Win+129 Len=0	TCP1 443 58554 [ACK] Seg=1 Ack=957 Wev=129
9324 6041.156845	ZyxelCom_fc:d7:da	Broadcast	0x8912	60 Ethernet II 🗸 🗸	0.344266	Application Data	TLSv1.3: Application Data
<				>	0.344266	443 55554 [ACK] Seq=5 Ack+30 Win+632 Len=0 443	TCP1 443 -+ 55064 (ACK) Seg+1 Ack+30 We+630
				on interface \Device\NPF_{6E6AD	0.353750	Application Data 441	TLSv1.3: Application Data
				fc:d7:da (60:31:97:fc:d7:da)	0.357862	ration Data 40	TLS+L2: Application Data
		58.0.125, Dst: 172.217			0.366553	Application Data 417	TLSr1-2: Application Data
> Transmission Control	ol Protocol, Src Port	: 60678, Dst Port: 443	, Seq: 161	190, Ack: 8955, Len: 0	0.367308	ation Data	TLS+1.2: Application Data
<				>	0.367597	aton fata 40	TLSv1.2: Application Data
0000 60 31 97 fc d7	da 0c dd 24 28 07 a	8 08 00 45 00 1	·· \$(····E		0.368594	ation Data 40	TLS+1.2: Application Data
	00 80 06 c4 6c c0 a8		·· ·i···}·		0.368738		TLSr1-2: Ampleation Data
	bb fc 47 69 15 24 71		G i \$q <p< td=""><td></td><td>0.369052</td><td></td><td>TLS+L2: Application Data</td></p<>		0.369052		TLS+L2: Application Data
0030 01 fc b5 a3 00	00						

Sondage ©: https://app.wooclap.com/PGISKC.


Network Firewall

- It uses a rule table to accept/reject/forward network packets
- The rule table consists of network rules on inbound and and outbound network packets
- For example, the rule

```
pass tls any any -> any any (tls.sni; content:"polymtl.ca"; startswith;
nocase; endswith; msg:"Permit HTTPS access to polymtl.ca"; sid:1000002;
rev:1;)
```

Rules (3) Info							
Priority 🛡	Protocol 🔺	Source 🗸	Destination ⊽	Source port range ⊽	Destination port range ⊽	Action ⊽	Custom action
10	17	0.0.0/1	0.0.0/0	80-80 443-443	8001-8001	Pass	-
11	6	0.0.0/0	0.0.0.0/0	53-53	5003-5003	Forward	fwdact
12	All	0.0.0.0/0	0.0.0/0	-	-	Pass	-

Network Firewall

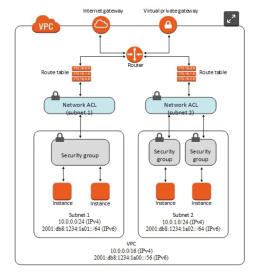
Credits: Amazon

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - 約

Network Access Control List

Network models

Network security concepts

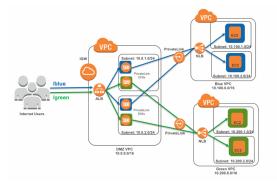

- controls the inbound and outbound traffic at the subnet level
- it uses a rule table to accept/reject/forward traffic on subnets

Summa	Inbound Rul	es Outbou	nd Rules	Subnet Associations	Tags			
Allows inbound traffic. Because network ACLs are stateless, you must create inbound and outbound rules.								
Edit								
Rule #	Туре	Protocol	Port Range	Source	Allow / Deny			
1	All ICMP	ICMP (1)	ALL	0.0.0/0	ALLOW			
100	HTTP (80)	TCP (6)	80	0.0.0/0	ALLOW			
200	HTTPS (443)	TCP (6)	443	0.0.0/0	ALLOW			
300	SSH (22)	TCP (6)	22	0.0.0/0	ALLOW			
1000	Custom TCP Rule	TCP (6)	1024-65535	10.0.0/16	ALLOW			
*	ALL Traffic	ALL	ALL	0.0.0/0	DENY			

Security Groups

- allows one to define network access control rules that apply to a group
- All resources and subnets *RS* attached with a security group *S* are controlled by the same rules
- Security group can be attached to an EC2 instance, a subnet, or a virtual private cloud

Security Groups

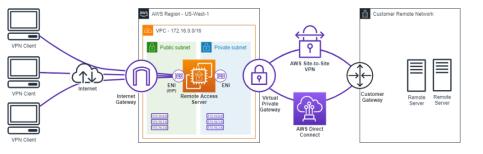


Network Load Balancer

- automatically distributes traffic workloads
- across multiple network nodes such as IP addresses, EC2 instances or containers
- in one or more Availability Zones to increase the fault tolerance
- by selecting targets on network flow information (e.g., protocol, src IP, src port, dest IP, and dest port)
- It uses different algorithms for selection: round-robin, distributed Hashing, consistent Hashing
- What is the difference between an application load balancer and a network load balancer ?
- How Load balancing can help in blue-green deployment ?

Network Load Balancer

- a blue/green deployment is a near-zero downtime strategy with two identical environments where
 - blue environment is running the current application version
 - green environment is running the new application version
- load balancing distributes old/current connections to continue to old/current applications and new connections routed to new applications


Virtual Private Network

- Virtual Private Network (VPN) creates a direct and encrypted virtual channel over the Internet from an endpoint device to a network
- VPN uses different secured protocols
 - **Point-to-Point Tunneling (PPTP)**: first protocol with fast data speeds but basic encryption can be broken
 - Layer 2 Tunnel / IPSec: widely used protocol as replacement of PPTP and it is paired with security protocol IPsec for a strong security
 - Internet Key Exchange v2: creates a secure key exchange session and often paired with IPSec for encryption and authentication (e.g., Pfsense)
 - Secure Socket Tunneling: offers a strong security with 2048-bit SSL/TLS certificates for authentication and 256-bit SSL keys for encryption
 - **OpenVPN**: supports AES-256 bit key encryption with 2048-bit RSA authentication but has slower speeds

Network models

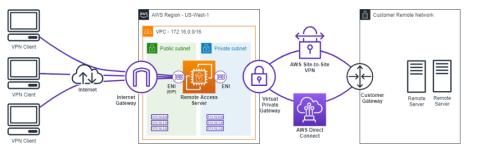
Network security concepts

Virtual Private Network

Credits: Amazon

Virtual Private Cloud

- isolated, secured and private cloud in the public cloud
- It uses 4 components:
 - **Private Subnets**: have private IP address ranges making them unavailable to the public network
 - Virtual LAN (VLAN): local network connected together without access to Internet
 - **VPN**: allowing to connect from a private network to the public network over an encrypted tunnel. To do so, it leverages the Network Address Translation and the Border Gateway Protocol (BGP) routing
- What is the role of the Network Address Translation (NAT) ?
- What is the role of the BGP routing ?

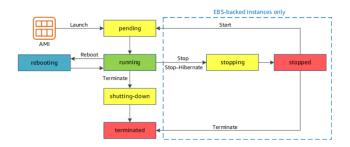

Virtual Private Cloud

- Network Address Translation
 - **Stateless**: maps private IP address to a public IP address without saving the public IPv4 address
 - **Stateful**: dynamically maps a private IP address to a public IP address from the NAT pool (group of public IPv4 addresses)
- Border Gateway Protocol (BGP) is a routing path-vector protocol used to exchange information across different network routers
 - a path vector sends the entire path for each destination based on policies or prefixes
 - the autonomous system boundary routers send path-vector messages (e.g., AS path, next-hop, origin) to notify the reachability of networks
 - Each router receives a path-vector message, verify it, update its routing table with the message according to its policy, and notify the nearest router.

Network models

Network security concepts

Virtual Private Cloud


Credits: Amazon

Sondage ©: https://app.wooclap.com/AOKAYY.

Elastic Compute Cloud

- EC2 is a service that uses the concept of instances based on virtual machines
- It specifies hardware, compute, memory, storage capabilities
- It manages instances in the cloud: launching, pending, running, stopping, termination

Credits: Amazon